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ABSTRACT 

 

Flexible, large area circuits represent a new form of electronics which have led to 

rapidly rising and promising applications in displays, sensors, medical devices and other 

areas. The most important challenge in realizing these macroelectronic systems is 

fabricating the required thin film transistors on plastic substrates with a low thermal 

budget. Here most TFTs are fabricated using amorphous silicon (a-Si) as the active 

channel layer and amorphous silicon nitride as the gate dielectric layer. Low device 

mobility and electrical instability are the main disadvantages of a-Si TFT. Laser annealed 

polycrystalline silicon TFTs offer much better device performance and stability, and 

enable integration of driver circuits in the same process as the pixelated array. However, 

poly-Si suffers from poor uniformity across the substrate, lower/reduced device yield, 

and higher process complexity. Recently, direct-deposited nanocrystalline silicon (nc-Si) 

has been introduced as an attractive material alternative for the TFT active layer. While 

high electron mobility (~50cm2/V-s) has been achieved in n-channel devices, the hole 

mobility in p-channel devices has been very low (~ 0.01cm2/V-s) and thus unsuitable for 

CMOS applications. 

In this thesis, we will describe the growth and properties of p-channel nc-Si thin 

film transistor (TFT) devices. In contrast to previous work, a significant improvement in 

the hole mobility was achieved by an innovative approach of depositing nc-Si for the 

channel material using very high hydrogen dilution and low ion bombardment in a 

PECVD reactor. The doping of the body was changed by doping with ppm levels of 

phosphorous, and the threshold voltage was found to change systematically as 
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phosphorus content increased. We were thus able to show that a high-quality 

nanocrystalline silicon material can be controllably doped in small amounts. The TFT 

devices are of the bottom-gate type, grown on oxidized Si wafers. Source and drain 

contacts were provided by using either plasma grown p type nanocrystalline layers, or by 

the simple process of Al diffusion. A top layer of plasma-deposited silicon dioxide was 

found to decrease the off current significantly. High ON/OFF current ratios exceeding 

106 were obtained. Hole mobilities in the devices were consistently good, with the best 

mobility being in the range of ~1.6 cm2/V-s, which is the highest so far to the best of our 

knowledge. 
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CHAPTER 1. INTRODUCTION 

 

1.1 Research Motivation 

Integrated backplane circuits are the key to the widespread application of large-

area electronics, which presently comprises liquid crystal displays and X-ray detector 

arrays, but would eventually extend to sensor skin, electrotextiles and mechatronic 

materials. These large-area backplane circuits will be based on unit cells, or pixels, which 

contain the basic function and its control, with each cell containing some intelligence 

used for local signal processing in amplification, addressing and multiplexing [1]. In this 

scheme, a neighborhood of cells will be controlled by a higher performance circuit, and 

the entire backplane will be addressed by driver circuits. To make such backplanes 

available, pervasive circuit integration will be required [1]. A basic requirement of such 

integration is that a single transistor material and process be used for all hierarchical 

functions, ranging from driving circuitry to high speed switching and multiplexing. In 

other words, the backplane transistor technology should perform similarly to 

complementary metal-oxide-semiconductor (CMOS) circuits made in single-crystal 

silicon, and all this has to be done at sufficiently low temperatures compatible with 

inexpensive substrates.  

Silicon, being the backbone of the semiconductor industry is a natural choice in 

achieving these objectives, and thus the need to go towards low temperature silicon 

processing. Over the years, amorphous, polycrystalline, and recently, nanocrystalline 

forms of silicon have gained prominence as low temperature alternatives to crystalline 

silicon for large-area applications. Amorphous silicon is the current material for most of 
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the thin film transistors used in liquid crystal displays, and a host of other applications. It 

is a versatile material for limited mobility applications, and can be reliably grown at very 

low temperatures, but suffers from bias stress and light induced degradation. 

Polycrystalline silicon on the other hand has much higher mobilities, and hence suitable 

for high-speed CMOS applications. But it requires processing at much higher 

temperatures, which is out of scope of inexpensive plastic substrates. Although methods 

of converting amorphous silicon to polycrystalline silicon exist by laser induced 

crystallization, it suffers from problems of device uniformity besides being expensive. 

For this reason we have been pursuing thin-film transistor technology based on 

nanocrystalline silicon, nc-Si:H as an inexpensive alternative. This semiconductor can 

provide sufficient electron mobility [1–3] and hole mobility to host CMOS circuits [2]. 

Moreover, it can be fabricated at low temperatures which are compatible with the plastic 

substrates envisaged for roll to-roll production [3]. However, nc-Si:H is a complex 

material whose deposition and device processing are not yet mature [4]. The high 

mobility material develops only after a certain film thickness with an associated problem 

of high transistor leakage current in the ‘off’ state [1]. With their top gate geometry, 

introduction of SiO2 dielectric, and reduced tolerance to series resistances, high-mobility 

TFTs made from directly deposited nc-Si or from laser crystallized mc-Si pose much 

greater challenges to fabrication on plastic. Making the ancillary materials, including a 

stable gate dielectric and highly conducting contacts at temperatures of ~100oC may turn 

out to be more demanding on the fabrication of silicon TFT CMOS on plastic substrates 

than the preparation of the channel material itself [5]. 
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The next frontier of the flat panel display industry, flexible and conformal 

displays, extends the motivation for exploring CMOS and high-current capable Si TFTs 

to their fabrication at low temperatures using flexible foil substrates. Flexible displays are 

very attractive since flexibility is associated with light weight and ruggedness. These are 

desirable features for portable applications of today, and even more so for the large-area 

displays, e-textiles, and mechatronic materials of tomorrow. 

1.2 TFT Structures 

Unlike the conventional method of crystalline silicon Field-effect Transistor 

fabrication, many possible device geometries exist for TFTs using thin-film technology. 

These devices can be broadly classified into top-gate and bottom-gate types depending 

upon the placement of the gate dielectric relative to the channel material. In bottom-gate 

(inverted) devices, the gate dielectric is below the active layer, while in top-gate devices 

the gate dielectric layer is above the active layer similar to conventional MOSFETS. 

These can be further classified into coplanar and staggered types depending upon the 

location of the source and drain contacts relative to the gate. In coplanar TFTs, the source 

and drain contacts are on the same side of the active region as the gate contact, whereas 

in staggered structures, the source and drain contacts are on the opposite side of the active 

region as compared to the gate contact. These device geometries are schematically 

described in the following figure. 
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                        Figure 1 Schematic of commonly used TFT structures [6] 

 

The inverted staggered structure is the most popular configuration for a-Si:H 

TFTs, and is currently the industry standard. One of the most important reasons for this is 

that silicon nitride forms an excellent gate dielectric with amorphous silicon which is 

currently the material of choice owing to low cost and low temperature fabrication. When 

silicon nitride is deposited by PECVD, the starting material is of very poor quality, and 

improves as it grows in thickness. If SiNx is grown on top of an active layer, the channel 

formation interface layer will have many defects. This will lead to poor conduction and 

mobility in the channel, including increased susceptibility to gate bias stress effects. For 

this reason, the gate is first patterned on the substrate, followed by SiNx dielectric and 

active layer deposition. This results in improved interface with good electron mobility 

(~1cm2/V-s).  

For nc-Si:H thin film transistors, silicon dioxide is the preferred gate dielectric on 

account of a better interface and higher stability. One of the above TFT structures is 

chosen, after a careful consideration of processing factors and materials involved. For top 
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gate nc-Si:H TFTs, the most critical factor which dictates a particular design is the nc-

Si:H and SiO2 interface. 

1.3 Literature Review 

Although the concept dates back to 1935 [7], the study of thin film transistors 

(TFTs) blossomed in the late fifties, and early sixties [8,9] for potential replacement of 

the bipolar transistor. At that time, TFTs (based on thin films of III-V or II-VI 

compounds such as InAs, CdS or CdSe) were competing with single crystal Si MOS 

devices for logic circuit applications. The latter clearly emerged as the winner in the mid-

sixties only. The principle of active matrix addressing was probably first put forward by 

Brody in 1969 [10].  

In 1971, in a famous paper, Lechner and co-workers described and analysed the 

AMLCDs and proposed several possible approaches, including TFTs [11]. However, it is 

probably the first report, by LeComber and co-workers in 1979, of a a-Si:H TFT 

fabricated by plasma enhanced CVD at low temperature that triggered the development 

of the AMLCD industry. Since then, hundreds of millions of man-hours of research and 

development and a comparable amount of investment have brought the a-Si:H technology 

to a mature state. 

Historically a-Si:H TFTs are used primarily as pixel switches, but researchers 

have explored them for current sources [12], on pixel amplifiers [13], and peripheral 

driver circuits [14,15]. The complementary circuits required for low-power operation are 

out of reach of a-Si:H because of its low electron mobility and its hole mobility is 

insufficient for any feasible p-channel device operation. Nanocrystalline (nc) and 



www.manaraa.com

 6 

microcrystalline (mc) silicon, with their higher field-effect mobilities, considerably 

expand the range of application of silicon TFTs. nc- and mc-Si have been proved to be 

capable of p and n channel and thus of complementary metal insulator semiconductor 

(CMOS) operation. These devices when used for peripheral driver circuits can enable 

high-level on-glass integration. High-level integration has the dual benefit of raising yield 

and reducing cost. Additionaly, nc- and mc-Si TFTs are also capable of driving high-

current loads such as organic light emitting diodes (OLEDs) for future displays. The 

following table summarizes the low-temperature silicon processes prevalent at present. 

 

Table 1. Status of silicon materials for TFTs [5]: 

 

 

Though a lot of research groups are engaged in research of nanocrystalline silicon 

thin film transistors, it is the group led by Sigurd Wagner at Princeton University who has 

done pioneering work in this field during the last seven years. They have demonstrated a 

maximum electron mobility of 40cm2V-1s-1 for nc-Si top-gate TFTs [16], and for the first 

time, a reasonable hole mobility of 0.25cm2V-1s-1 [16]. Another group led by Arokia 
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Nathan at University of Waterloo, Canada have demonstrated for the first time a 

maximum electron mobility of 150cm2V-1s-1 in a very recent publication [17]. 

1.4 Scope of Research 

The reported value for electron mobility at 40cm2V-1s-1 for top gate 

nanocrystalline silicon thin film transistors is quite reasonable and as verified by 

independent experiments. The highest reported value for hole mobility at 0.25cm2V-1s-1 is 

quite low and as the authors have acknowledged, this is due to poor contacts and low 

quality of silicon dioxide gate insulator deposited by RF PECVD. The highest value of 

hole mobility measured for nanocrystalline silicon using Time Resolved Microwave 

Conductance measurements is 2cm2V-1s-1.  

A careful consideration of the above facts led us to the decision of focusing on p-

channel nanocrystalline silicon thin film transistors and contributing to its improvement. 

Moreover, the fabrication itself revolves around involve a lot of materials with each of 

those having immense potential for improvement, as summarized below. Initially, we had 

devoted quite a lot of time in fabricating n-channel nanocrystalline silicon TFTs to make 

sure that the processing, at least was right. n-channel TFT on account of a higher mobility 

helped us troubleshoot as it would have been very difficult otherwise, for a p-channel 

TFT in view of its limited mobility. 

1.4.1 Nanocrystalline Silicon 

One of the biggest problems hindering nc-Si research is a lack of knowledge 

about the transport and conduction mechanism in this material. Some believe that 

conduction in nc-Si:H is primarily limited by the a-Si:H material, while others believe 

that the conduction is limited by the crystalline grains, or defects within the crystalline 

grains [5]. The conduction mechanism in nc-Si:H is very complex, and depends on many 
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parameters including average grain size, crystalline fraction, degree of oxygen 

contamination, hydrogen concentration in film, defect density, crystallographic plane 

orientation, etc. Again, all of these are determined by the processing parameters such as 

RF plasma power, frequency, hydrogen dilution ratio, pressure, substrate temperature, 

etc. These are primarily processing and material science issues, and once resolved, one 

will be able to fully optimize the growth of nc-Si in order to have a material with 

predictable properties tailor-made for a particular application. 

1.4.2 Highly Conducting nc-Si:H Contacts  

To fully utilize the best channel layer performance from a TFT, it is very essential 

that the doped layers be highly conductive. Although current deposition techniques have 

matured to the extent so as to provide good quality nc-Si:H contacts at moderate 

temperatures (>250oC), low temperature performance(~100oC) in terms of conductivity is 

still a matter of concern. A lot of scope for improvement still remains, and in this work 

we would show how we increased the conductivity in nanocrystalline silicon doped p-

layers by over two orders of magnitude at low deposition temperatures of 150oC. 

1.4.3. Stable Gate Dielectric 

All TFT technologies for plastic (silicon, organics, CdSe) share the need for a 

high quality gate dielectric made at ultra-low temperature. A promising direction is 

growing the silicon dioxide under hydrogen free conditions so as to improve the gate 

oxide breakdown characteristics. In this thesis, we would also describe some of our work 

in developing good quality silicon nitride and silicon dioxide dielectrics by RF PECVD. 

The gate dielectric will remain at the focus of TFT research for some time to come, 

regardless of the type of channel semiconductor. 
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CHAPTER 2. MASK DESIGN AND TFT FABRICATION 

 

2.1 Introduction 

In order to obtain a high performance thin film transistor a proper design of the 

mask is absolutely critical. In addition to the proper material deposition steps, one has to 

ensure that the design margins are carefully maintained in the mask so as not to run into 

processing and lithographic issues like improper overlap, inadequate aspect ratios, among 

others. Before moving on to thin film transistor fabrication, masks were designed for both 

top-gate and bottom gate device configurations using L-Edit. Since the masks were 

printed from an outside vendor, four masking levels were incorporated in a single mask 

defined by chromium patterned on glass. The masks were designed to have channel 

lengths of 20µm, 30µm, 35µm 40µm and 45µm at a fixed channel width of 200µm. The 

devices were then distributed in random rows so as to check for processing uniformity 

and also to account for any characteristic location signatures that might arise. Here, 

would only describe the mask design for bottom-gate type thin film transistors and leave 

out the discussion for a similar mask designed for top gate type devices. 
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2.2 Masking Levels and Dimensions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Schematic of masking layers and dimensions for bottom-gate TFT fabrication 

15µm 
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W 
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Mask 3(Device Isolation) Mask 4(Metallization) 
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2.3 TFT Fabrication Overview 

A brief description of the fabrication steps along with the detailed schematics 

involving the above masking layers is presented in the following: 

1. Gate Oxide formation and nc-Si:H deposition: In this process, heavily doped p-type 

bare silicon wafers are cleaned by a standard RCA clean. The wafers are then loaded in a 

furnace and 1200Å of dry oxide is grown at a temperature of 1100oC. The wafers are then 

cooled down within the furnace in an ambient of nitrogen and hydrogen for 1 hour to 

improve oxide quality, and for the remaining time in nitrogen ambient, before gradually 

removing them at around 600oC. In the second step, the oxidized wafers are piranha 

cleaned followed by an ultrasonic in DI water before loading in the PECVD chamber. 

About 100nm of nc-Si is then deposited by a method described in a later section. 

 

 

 

 

          Figure 2.2 nc-Si:H deposited over thermally oxidized crystalline silicon wafer 

 

2. Formation of active areas: In this step, we use the first mask to define the active 

regions using photolithography. The nc-Si:H is then selectively removed by using a wet 

etch recipe involving Hydrofluoric Acid, Nitric Acid, Acetic acid, and DI water. The 

purpose of this step is to isolate the devices, as would be discussed later.  

 

 

Si-wafer 

thermal oxide 
nc-Si:H 
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                Figure 2.3 Active areas defined by photolithography and etching 

 

3. Device Isolation and Passivation: After stripping the photoresist with acetone and 

methanol, a further piranha clean is performed followed by ultrasonic in DI water to 

remove contaminants. At this stage, the process was aborted if any peeling off was 

noticed in the nc-Si:H layer, because of doubts in its structural integrity. Then the wafers 

were loaded in the chamber to deposit around 3000Å of silicon-dioxide by RF-PECVD. 

 

 

 

 

              Figure 2.4 Device isolation and passivation by PECVD oxide 

 

4. Source and Drain Patterning: At this stage the second masking level is introduced 

and regions for source and drain are opened up by photolithography followed by an 

Buffered Oxide Etch. The wafers are visually inspected for a complete removal of the 

oxide from exposed areas. The phororesist is then stripped followed by a Piranha clean, a 

slight BOE dip to remove any native oxide over the nc-Si:H surface and a DI water 

ultrasonic. 

Si-wafer 

thermal oxide 
nc-Si:H nc-Si:H 

Si-wafer 

thermal oxide 
nc-Si:H nc-Si:H 

PECVD oxide 
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                  Figure 2.5 Opening of via in the oxide for source and drain regions 

5. Contact formation: Now, the wafers are loaded in the deposition chamber and 75nm 

of heavily doped p-type nc-Si:H is deposited by ECR/VHF PECVD and would be 

described later. The wafers are then subjected to a BOE followed by a DI water rinse and 

loaded in the thermal evaporator. Now, 2100Å of Al or a mixture of 50Å of Cr and 

2050Å of Al is sequentially evaporated, by a method described in a following section. It 

is worthwhile to note here that the gate metallization gets performed over the bare silicon 

wafer protected by a hard mask. 

 

 

 

 

 

 

                      Figure 2.6 Doped material deposition and metallization 

6. Final Device Formation: In this step, masking layer 3 is introduced, and the device is 

defined by photolithography. The selected areas are then subjected to an etch solution of 

Phosphoric, Acetic and Nitric acid (PAN etch) to expose the heavily doped p-type nc-

Si-wafer 

thermal oxide 
nc-Si:H nc-Si:H 

PECVD oxide 

Si-wafer 

thermal oxide 

PECVD oxide 

nc-Si:H nc-Si:H 

P+ P+ 

aluminum 
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Si:H layer underneath. A dry etch then follows to remove this nc-Si:H layer and isolate 

the devices. The devices are now ready to be probed after the photoresist strip. 

 

 

 

 

 

                               Figure 2.7 Cross section of the final device 

2.4 TFT Processing 

2.4.1 Plasma Enhanced Chemical Vapor Deposition 

The goal of the plasma enhanced chemical vapor deposition was to deposit a film 

with desired properties on the surface of the wafer. In this work, chemical vapor 

deposition was used to deposit intrinsic and doped semiconductor films and dielectrics of 

silicon oxide and nitride. The chemical vapor deposition methods used were Very High 

Frequency PECVD, Radio Frequency PECVD and Electron Cyclotron Resonance 

PECVD. We would discuss these deposition techniques along with the process variables 

at length in the chapters to follow.  

2.4.2 Metallization 

The goal of the metallization step was twofold: firstly to deposit a thin conducting 

material onto the wafer for good contacts, and secondly to selectively dope the source 

and drain regions of the TFT as we would be discussing later. To serve as good contacts 

Si-wafer 

thermal oxide 
nc-Si:H nc-Si:H 

PECVD oxide 
Al Al Al Al 

P+ P+ P+ P+ 
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to the exterior world, the metal should deposit uniformly and conformally on the 

patterned surface. In addition to these, it should have a high conductivity, good adhesion 

to the bonding surface, and deposition should be free of voids and pinholes. In this work, 

we used aluminum and chromium for contacts to the TFTs. Aluminum, as we know 

diffuses into silicon upon annealing and dopes it p-type. Thus, for n-channel devices we 

used a sandwich structure of chromium and aluminum, where chromium served as the 

diffusion barrier to aluminum and also as contacts to heavily doped n-type 

nanocrystalline silicon source and drain regions. This prevented a diode type structure 

from forming at the interface upon anneal and kept the series resistances low.  

We deposited aluminum and chromium in a thermal evaporation system. The 

operating base pressure for any metallization was carefully chosen to be 1×10-6 Torr. The 

low chamber pressure is important because of several reasons. One of these is the mean 

free path of metal molecules would be longer at a lower pressure enabling uniform 

deposition. More importantly, a low base pressure ensures that most of the oxygen 

molecules have been gettered out of the chamber; otherwise metal-oxides would result, 

and particularly, aluminum oxide is a very good insulator. In addition to this, an 

important step is the degassing of chromium rods. Chromium has the ability to attract 

moisture, and when heated releases water vapor into the chamber causing contamination 

to any evaporation performed during this time. For good quality contacts, and devoid of 

pinholes, aluminum was evaporated at 15-20Å/sec, and chromium between 3-5Å/sec. 
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2.4.3 Photolithography 

The goal of the most important photolighography process was twofold. First, to 

create on the wafer surface a pattern, whose dimensions are as close to the design 

requirements as possible and second, to align the pattern on the wafer to the correct spot.  

Photolithography was performed in the NSF lab with a Karl Suss mask aligner with 

standard operating procedures, the details of which have can be found from the 

appropriate manual. The critical parameters in our work was a 20 minute prebake at 90oC 

and a 25 minute postbake at 120oC after exposure and develop.  

An important next step is a check on the quality of pattern transfer after postbake 

and before doing any subsequent etching steps. The patterned wafers are inspected under 

an optical microscope to identify problems associated with the photolithography stage. At 

that point if any abnormalities were found on the wafer due to the resist, the wafer could 

be “reworked”, which means that the existing resist can be stripped off with acetone and 

methanol followed by DI water rinse, and the same lithographic process can be 

performed on the wafer again. During this visual inspection any problems such as 

misalignment, residues, pattern dimension deviations, poorly defined patterns, and 

scratches are all grounds for rejecting the wafer and redoing the process. 

2.4.4 Wet etching 

The goal of the wet etch was to selectively and permanently transfer the pattern of 

the mask onto the exposed surfaces of the wafer. For an ideal pattern transfer we expect 

an etchant to cut the sidewalls vertically and replicate the original dimensions on the 

mask. Wet-etch by its chemical nature cuts through all exposed areas equally and is 

isotropic. Dry etch, as would be discussed later can be tuned to anisotropic by varying 

various process parameters. We used wet etch for most of our work since it is 
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inexpensive, less time consuming, and for most cases a slight lateral undercut compared 

to the device dimensions does not matter much. Both the metal layers in the transistor, 

chromium and aluminum were etched by a wet-process. Nanocrystalline silicon was also 

wet etched occasionally, depending upon the feasibility of the process. 

The wet etching chemistry involves transport of reactants to the surface where the 

reaction takes place, and transport of the reaction by-products from the reaction zone. 

The key ingredients in any wet etchant is an oxidizer ( HNO3, H2O2), acid or base to 

dissolve oxidized surface (HCl, NH4OH) and a dilutent media through products can be 

transported (H2O, CH3COOH). Most etching reactions are electrochemical, involving 

transfer of electrons during surface reactions. It can either proceed with oxidation 

involving a gain in electrons or through reduction involving a loss of electrons or by both 

in a redox reaction.   

 For performing a wet etch we immersed the wafer in a freshly prepared wet 

etchant solution with the appropriate type and amount of constituents. For the chrome 

etch, CEP-200 chrome etchant (manufactured by Microchrome Technology Inc.) was 

used. The aluminum etchant was prepared by mixing phosphoric acid, acetic acid, nitric 

acid and water in a solution of 4:4:1:1. This wet etchant for aluminum is commonly 

referred to as a PAN etch. Although, we had calibrated the etch rate of different 

materials, a visual inspection was used to determined the end point of a particular etch. 

To enhance etching uniformity, the immersion tank was agitated slightly during the 

duration of etch. 

Wet etch is isotropic and therefore some amount of undercutting takes place 

depending upon the etch rate and the time for which the wafer is immersed in the etchant. 

The exactness of the image transfer is thus dependent on factors such as over-etching, 

under-etching, lateral undercutting, and/or isotropic etching of the sidewalls. Since a 
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certain amount of undercutting is inevitable, a careful consideration of this was taken into 

account during mask design to avoid any device failures and appropriate margins were 

maintained in the dimensions of the transistor. Excessive undercutting will occur if the 

resist bond to the wafer surface fails, in which case the resist lifts off. This form of 

undercutting can be catastrophic to the transistor, and the so the remaining steps were 

aborted if this problem was found after an optical inspection following etch. 

Incomplete etching is a very serious condition for the transistor, since it would 

result in a short or an open circuit depending upon the material being etched. Therefore, 

we performed a slight amount of over-etch to discount the possibility of having an under-

etch. Causes of an incomplete etch may include too short an etch time, presence of a 

surface layer that slows the etching, thickness variations, and/or a weak etch solution. 

Severe over-etching can take place when the etch time is too long, or the etch solution is 

too strong. 

2.4.5 Dry etching 

The goal of dry etching is the same as wet etching, i.e. to permanently transfer the 

pattern of the mask to the surface layer of the wafer. However, the means by which this is 

accomplished differs from wet etching. Unlike wet etching, reactive ion etching can be a 

combination of chemical etching coupled with plasma energy for sputtering and hence 

etching by ion bombardment. Therefore, in reactive ion based etching, we have a 

chemical or isotropic component and a sputtering or anisotropic component. A delicate 

balance has to be achieved between the two for etching a given material with required 

selectivity and etch profile. 
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We used a reactive ion etch (RIE) system for dry etching nanocrystalline silicon 

and silicon nitride in our process of fabricating thin film transistors. Depending on the 

material to be etched a different set of etch parameters including gas chemistry, power 

(ion density), and pressure were used. All of these parameters along with the design of 

the RIE system will determine the etch rate of a material. Before dry etching could begin 

on the device wafer the etch rates of the nc-Si:H and (n+/p+) nc-Si:H needed to be 

determined.  The same samples that were used to determine the growth rate were also 

used in determining the etch rate. The samples were loaded into the RIE system and were 

etched for ten minute duration, following which, a thickness measurement was 

performed. The samples were again etched for a five minute duration, and the etch rate 

determined in each case after measuring the thickness by optical means. Table 2.1 shows 

the etch parameters and etch rates for the materials used in the transistor. 

Table 2.1:  RIE Parameters and Etch Rates 

        Film 

  (Etch Rate) 

 

      Pressure 
 

         RF 
       Power 

 

         DC 
       Voltage 

 

     Gas Flow 

 

     nc-Si:H 
 
  (218 Å/min) 

        
      25 mTorr 
 

      
      35 Watts 
 

       
      125 Volts 
 

O2 (4sccm) 
CF4 (50sccm) 
 

  (n+) a-Si:H 
 
  (246 Å/min) 

       
      25 mTorr 
 

      
      35 Watts 
 

      
      125 Volts 
 

O2 (4sccm) 
CF4 (50sccm) 
 

 

  (p+) nc-Si:H 
 
  (225 Å/min) 

           
       25 mTorr 
 

      
      35 Watts 
 

      
      125 Volts 
 

O2 (4sccm) 
CF4 (50sccm) 
 

Silicon Nitride 
 
 (>433 Å/min) 
 

          
       25 mTorr 
 

       
      50 Watts 
 

      
      100 Volts 
 

O2 (7.5sccm) 
CF4 (50sccm) 
NF3 (5sccm) 
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CHAPTER 3. CHEMICAL VAPOR DEPOSITION 

 

3.1 Introduction 

Chemical Vapor Deposition is defined as the formation of a solid film on a 

substrate by the reaction of vapor-phase chemicals (reactants) that contain the required 

constituents [19]. In a typical CVD process the reactant gases introduced into a reactant 

chamber are decomposed and/or reacted at a heated surface to form the thin film. During 

this process, the reactants do not react with the substrate material in bulk and hence no 

substrate material is consumed. 

The fundamental principles of chemical vapor deposition involve a lot of physics 

and chemistry including thermodynamics, heat transfer, gas-phase reactions, surface and 

plasma reactions, nucleation and growth, among others. Each process has to be carefully 

understood and optimized to deposit a film with given/expected properties. We would 

briefly touch upon the basic aspects of CVD for a better appreciation of growth and film 

properties discussed in later chapters.  

Before proceeding it is worthwhile to mention the relative advantages of CVD 

over other thin film deposition methods such as sputtering, evaporation, growth from a 

liquid phase, etc. In spite of some practical problems such as complexity and expensive, 

CVD is the method of choice because of a better conformality [20, 21] and the ability to 

deposit in holes and trenches. This is unlike other physical vapor deposition approaches 

which are highly directional. Moreover, CVD introduces beneficial impurities, unlike for 

example sputtering, where silicon films are defective in an atomic scale with poor 

electronic properties due to broken or dangling bonds. CVD films of silicon have 
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additions of hydrogen which terminate these dangling bonds, resulting in good quality 

films. There are however many examples where a particular deposition method is chosen 

depending upon the requirements in hand. 

In this work we have deposited nanocrystalline silicon using Very High 

Frequency (VHF) CVD, silicon dioxide and silicon nitride using Radio-Frequency (RF) 

CVD, and doped layers using Electron-Cyclotron-Resonance PECVD. The principle 

behind these plasma deposition schemes would be outlined briefly in this chapter, along 

with the advantages of using a particular technique over another.  

3.2 Fundamental Aspects of CVD 

In a typical CVD reactor, the film formation proceeds sequentially through the 

following steps and as illustrated below: 

 

 

 

 

 

 

 

 

 

 

                         

                      Figure 3.1 Processes occurring in a typical CVD reactor [20] 
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Firstly a given set of gases are introduced through the inlet which flows by forced 

convection to the outlet [19].These reactant gases reach the surface of the substrate by 

gas-phase diffusion through the boundary layer and are adsorbed on the substrate surface 

as adatoms. By surface migration, these adatoms reach the growth sites where the film-

forming chemical reactions are taking place resulting in solid film and gaseous 

byproducts. The gaseous byproducts are desorbed from the surface, diffuse through the 

boundary layer region near the surface and are removed with gas flow at the outlet. 

Energy for driving the film formation reactions can be supplied by thermal 

energy, photons or electrons or a combination of these. In this context, it is important to 

note that reactions can also occur in gas phase (homogenous reactions) in addition to 

those near the surface of the substrate (heterogenous reaction). Homogenous reactions 

produce dust which can get incorporated in the growing film leading to defects, poor 

adhesion and should be avoided. In addition, homogenous reactions can cause unwanted 

reduction in deposition rate due to consumption of reactants, whereas heterogeneous 

reactions are highly selective. Our aim therefore, was to minimize gas phase reactions by 

a judicious adjustment of deposition parameters. 

3.2.1 Thin film nucleation  

A closer look into the film formation mechanism suggests that the adatoms 

continue to move along the surface either due to kinetic energy from their lateral velocity 

or due to thermal activation from the surface. These adatoms while in motion can interact 

with other adatoms and form stable clusters, which are called nuclei, by a mechanism 

known as nucleation. The Gibbs theory of nucleation suggests that for molecular clusters 
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larger than a critical size, the total energy of the system decreases with increasing size, 

energetically favoring growth. If the critical radius is not reached, atom clusters are more 

likely to shrink and re-evaporate.  

 The film growth stage begins after the formation of critical sized nuclei. This is 

accompanied by the island stage where nuclei grow in three dimensions, but growth 

parallel to the substrate exceeds that normal to the surface. In the island step, the nuclei 

can have well defined crystallographic shapes, and is a result of diffusion of adatoms 

along the surface.  The next stage is coalescence, where nuclei join each other and form 

larger shapes. The area projected on the surface is reduced, and an increase in height of 

the deposit occurs. The reduction in surface area uncovers fresh substrate for nucleation 

sites resulting in formation of a continuous film, by a process known as secondary 

nucleation. 

3.2.2 Structure of thin films  

Thin films in general, have smaller grain size as compared to bulk. Grain size is a 

function of the deposition temperature and also post-deposition anneal, increasing with 

temperature as a result of increased surface mobility. The grain sizes also increase with 

thickness of the film and saturates after a certain thickness, indicating that new grains 

nucleate upon existing ones. The growth rate also plays an important role in determining 

grain size. At higher deposition rates, the clusters are quickly buried under subsequent 

layers even if they might have sufficient mobility. 

 The surface roughness of a film arises due to the randomness of the deposition 

process. Although this represents a higher energy state than a perfectly flat film, real 

films always have surface roughness associated with them. High temperature deposition 
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leads to lower surface roughness because the increased surface mobility helps in filling 

the peaks and valleys. Films deposited at low temperatures show an increase in surface 

roughness with thickness. 

 The crystallographic structure of thin films depends on the mobility of atoms and 

can vary from a highly disordered or amorphous structure to a well-ordered state. This 

well-ordered or crystalline state can also exhibit grain orientations in preferential 

directions depending upon the growth variables. Deposited dielectrics such as SiO2 and 

Si3N4 have an amorphous structure, while most metal thin films are polycrystalline. 

Silicon can have either an amorphous, polycrystalline, or single crystal structure 

depending on the deposition parameters and substrate material. 

3.3 Plasma Fundamentals 

The word "plasma" was first applied to ionized gas by Dr. Irving Langmuir, an American 

chemist and physicist, in 1929. Plasma consists of a collection of free-moving electrons 

and ions, i.e. atoms that have lost electrons. Energy is needed to strip electrons from 

atoms to make plasma. The energy can be of various origins: thermal, electrical, or light 

(ultraviolet light or intense visible light from a laser). With insufficient sustaining power, 

plasmas recombine into neutral gas.  

 Plasmas can be broadly divided into “thermal” and “cold” varieties. A thermal 

plasma is so hot that the average thermal energy of electrons (kT) is high enough to 

separate electrons from their atoms on a regular basis. In cold plasmas, only the electrons 

are hot, with neutrals and ions being at temperatures much lower than their ionization 

energies. This happens as the electrons on account of a much lighter mass are very 

inefficient in transferring energy to the much heavier species. Moreover, if the ratio of the 
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system size to the mean free path is small enough, the electrons don’t have enough time 

to transfer energy to the ions before recombining at the walls or being pumped away. 

This discrepancy between electron and gas temperatures make cold plasmas of great 

interest for planar processing, particularly for chemical vapor deposition. Hot electrons 

can ionize, dissociate and excite, including a lot of interesting chemistry that doesn’t take 

place otherwise in a cool gas. In practical systems, these plasmas occur at pressures well 

below atmosphere, and the reactor types are classified according to the mechanism by 

which they couple energy into the electrons. 

3.3.1 Capacitively excited plasma reactor  

The most widely used plasma reactor for CVD applications is the capacitive or 

“RF diode” plasma reactor. In this system, the plasma is generated by applying an AC or 

RF voltage between two electrodes in a parallel plate configuration, as shown in the 

following figure. The frequency of the signal can range from a few Hz to many MHz, and 

the two electrodes can either be of the same size or of different sizes.  

 

 

 

 

 

 

 

 

     Figure 3.2 Simplified view of a generic capacitively-excited plasma [20] 
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The plasma forms “sheaths”, which are regions of very low electron density, next to solid 

surfaces. The RF voltage mostly appears between these sheaths in a way similar to the 

dielectric region of a capacitor, with the electrode and the plasma forming the two plates 

as shown in figure 3.2.  

The ions roll down-hill in the sheath regions and acquire energy in this process 

which is dissipated at the walls. The electrons float upwards and are confined by the 

potential away from the sheath regions, which therefore have few electrons. The plasma 

is therefore the most positive object in the system, with the sheath potential varying 

during the RF cycle. 

For CVD applications, the system pressure is usually between 20mTorr and 

10Torr. The gap between the electrodes is an important parameter and varies from 0.5cm 

to 10cm, usually getting smaller for high pressure operation. Typical gaps are a few 

hundred times the mean free path and so it is the product of the chamber pressure and the 

electrode distance which is important in designing a system. 

 Typical electron temperatures are around 5eV, and the ion density is equal to the 

electron density in the plasma to maintain overall charge neutrality. Though most atoms 

and molecules have ionization energies ranging from 5eV to 20eV, around 100eV of 

energy is required to produce an ion and a new electron, due to energy loss and 

inefficient energy transfer. The density of electrons and ions is known as the plasma 

density. The plasma density depends upon a fine balance between the input power which 

heats up electrons and provides energy to ionize, and the loss of ions to the walls. In 

typical capacitive plasmas, the plasma density is very low, with about 0.01% fractional 
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ionization. Fractional excitation can be much higher, since excitation and dissociation 

require much less energy than ionization. 

3.3.2 Effect of excitation frequency  

The actual potential across the sheath vary with time and add up to the applied RF 

voltage. Since the plasma is always more positive than any of the electrodes, one sheath 

grows and the other shrinks as we go through the RF cycle. For ac excitation at tens of 

KHz, the ions and electrons have time to leak out and the plasma density varies with the 

AC cycle.  For frequencies >>100KHz, there is not enough time for electrons and ions to 

be lost in different parts of the sinusoidal cycle, and many RF cycles are required by the 

ions to cross the sheath. So, the kinetic energy in this case reflects the time average 

potential unlike the instantaneous potential exhibited at low frequencies. This explains 

the fact that higher frequencies lead to lower ion energy, and less bombardment at the 

substrate.  

 

Figure 3.3 Ion energy as a function of                Figure 3.4 Ion energy as a function of  
 ion flux and excitation frequency [22]                       plasma excitation frequency [22] 
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Also, as frequency increases into the MHz range, two new mechanisms for 

transferring energy to the electron assume significance. Firstly, the change in sheath size 

during each RF cycle results in a displacement current flow as the charges move back and 

forth through the plasma. This displacement current can be quite significant [19] 

(3mA/cm2), and much larger than the sheath ion currents. This displacement current can 

cause heat dissipation as it encounters resistance in the plasma. Since the power is 

proportional to square of the current, and the current is proportional to the frequency, the 

power dissipated scales as the square of the frequency.  

Secondly, the sheath velocities at high frequencies approach electron thermal 

velocities (107cm/sec). As a result, electrons in the plasma can scatter from the sheath and 

gain energy. In the same way the electrons can also give up energy to the sheath when it 

is moving away, but the number of electrons being encountered by the sheath is higher 

when it moves into the plasma instead of moving out. Sheath reflection is localized near 

the moving sheath edge and also scales as the square of the frequency. 

3.3.3 Influence of deposition pressure: 

In this section we would discuss the very important effect that chamber pressure 

has on the growth of nanocrystalline silicon thin films deposited by PECVD. For this part 

of the work, we deposited nc-Si:H in a parallel plate VHF-PECVD reactor using a 

mixture of silane and hydrogen at a temperature of 300oC. Thermally oxidized crystalline 

silicon wafers were used as substrates, and the plasma power was kept fixed at 22W. The 

films were grown with silane to hydrogen dilution ratio of 99% using a VHF frequency 

of 45.9MHz. The deposition was done at pressures of 100mTorr and 300mTorr 
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respectively and the films were compared using Raman Spectroscopy and X-Ray 

Diffraction.   

0E+0

1E+3

2E+3

3E+3

4E+3

5E+3

6E+3

300 350 400 450 500 550 600 650

Raman Shift (cm
-1
)

R
a
m
a
n
 I
n
te
n
s
it
y
 (
A
.U
.)

C.F. = 81%

P = 100mTorr

0E+0

1E+3

2E+3

3E+3

4E+3

5E+3

6E+3

7E+3

300 350 400 450 500 550 600 650

Raman Shift (cm
-1
)

R
a
m
a
n
 I
n
te
n
s
it
y
 (
A
.U
.)

C.F. = 79%

P = 300mTorr

 

 Figure 3.5 Raman Spectra of nc-Si:H film        Figure 3.6 Raman Spectra of nc-Si:H film 
 deposited at 100mTorr                                       deposited at 300mTorr 
 

The Raman spectra for both the films are shown in figure 3.5 and figure 3.6 with 

the prominent crystalline peak at ~520cm-1 accompanied by an amorphous phase at 

~480cm-1. A comparison of crystalline fraction from the Raman spectra of the two films 

reveals that both of the films had achieved approximately the same degree of 

crystallinity. It may be mentioned here that upon increasing the pressure to more than 

300mTorr, the crystalline fraction decreases for depositions done under the same power 

conditions. This happens because the ion bombardment level falls below the critical level 

to achieve best crystalline films. We have thus found out that the power has to be 

increased slightly with increase in pressure to maintain the critical level of ion 

bombardment required to promote predominantly nanocrystalline phase formation. 
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Figure 3.7 XRD of nc-Si:H film grown at a         Figure 3.8 XRD of nc-Si:H film grown  
   pressure of 100mTorr                                            at a pressure of 300mTorr 

 

Figure 3.7, and figure 3.8 show the results of X-Ray diffraction performed on the 

two films grown at high and low pressures under otherwise identical conditions. For the 

film grown at a pressure of 100mTorr, the grains were predominantly oriented in the 

<111> direction with a small fraction of the grains being oriented in the <220> direction 

with grain sizes of 11.5nm and 8.5nm respectively. Now, as the deposition pressure is 

increased to 300mTorr, we have a couple of interesting observations: the grains are still 

oriented in the <111> and <220> directions, although the <220> grains start becoming 

more prominent. Most importantly, the <220> grain size have now doubled as compared 

to the previous case, and are now 16.2nm. The <110> grain sizes of 11.9nm are 

comparable to the low pressure deposition at 100mTorr.  

Therefore at high pressures, we find a tendency of the grains to orient towards the 

<220> direction which is thermodynamically more stable accompanied by an increase in 

size. This can be explained by the fact that at higher pressures, the films have more 

chance to relax and thus attain thermodynamically preferred orientations. The electron 
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mobility is expected to be higher along the <220> direction as compared to <111>, and 

also increase with grain size. An interesting experiment in the future could be in 

depositing nc-Si:H channel layers for TFT at increasing pressures and then correlating the 

mobility to the grain size and orientation to gain more fundamental insights into the 

material and transport mechanisms. 

3.4 Electron Cyclotron Resonance (ECR) CVD 

3.4.1 Operation principle 

The ECR source operates on microwave energy coupled to the natural resonant 

frequency of the plasma electrons in presence of a static magnetic field. As shown in the 

following figure, a charged particle moving with a constant velocity (v), perpendicular to 

a uniform magnetic field (B) experiences a Lorentz force. The electron with mass me, 

would orbit in a circular path with Larmour radius, rc given by rc = mev/qB, and with an 

angular frequency wo = qB/me. Typical values of the Larmour frequency are 280 MHz at 

a magnetic field of 100 Gauss or 2.8 GHz at 1000 Gauss [20]. Under the condition that 

the pressure is sufficiently low for electrons to complete their orbits without scattering, 

the electromagnetic field at Larmour frequency is in phase with the electron motion and 

adds energy on each orbit. ECR reactors typically operate at a microwave frequency of 

2.47 GHz.  

 The application of magnetic fields to the plasma results in “trapping” of the 

electrons. They are thus forced to circle around the field lines instead of diffusing freely 

to the walls. The ions are less influenced by the magnetic field since they have much 

larger Larmour orbits and shorter mean free paths. Therefore, the probability that a 
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molecule can be ionized by a hot electron increases due to the increased path length, and 

so the plasma can be sustained at very low pressures (few mTorr) where conventional 

capacitive plasmas are difficult to ignite. Shown below is the simplified diagram for our 

ECR-PECVD reactor. 

3.4.2 Experimental setup 

 

               

         Figure 3.7 Simplified diagram of the ECR-PECVD reactor used in this work  

3.4.3 Discussion 

Though capacitive plasma reactors are simple to build and are versatile, they 

suffer from some significant limitations. Especially at low pressures, increasing the RF 

power does not necessarily increase the plasma density with the power getting wasted in 
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enhanced ion bombardment and hot electron creation instead of contributing to 

ionization. The plasma potential can become very high and lead to contamination of 

substrates by sputtering of chamber walls. The ECR method of creating discharges can 

help us to circumvent many of these limitations, some of which are [23]: 1. Higher ion 

density of over an order of magnitude more as compared to rf-plasma because of the fact 

that electrons can absorb more efficiently from the microwave source from resonance. 2. 

Low ion energy (10-50eV) leads to growth of films, especially oxides with good 

microstructure and other mechanical properties. 3. The operational gas pressure in ECR 

reactors is a few mTorr, which helps prevent unwanted gas phase reactions. 4. A high 

degree of gas decomposition approaching 100% can be achieved which improves the gas 

utilization and film growth rate. 5. Ion density and ion energy can be independently 

controlled and 6.Lower contamination due to the absence of electrodes.  In this work, we 

have deposited heavily doped p-type nanocrystalline silicon films using ECR-PECVD 

and the processing details would be covered in a later chapter. 
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CHAPTER 4. DIELECTRIC CHARACTERIZATION 

 

4.1 Introduction 

The gate-dielectric is the most important component of a thin-film transistor and 

governs the electrical characteristics of the device. Without a good gate-dielectric, 

transistor performance would be irreproducible and very unpredictable. Before 

proceeding with fabrication of the TFT a lot of research was done on the gate dielectric 

material that was to be used in the transistor. Primarily, the gate dielectric had to satisfy 

two important requirements among a host of others. Firstly, the gate material has to form 

a good interface with silicon with minimal density of surface states, so as to have a low 

threshold voltage. Secondly, it must have high breakdown strength for stability and keep 

the leakage current at low levels. In order to arrive at a best quality gate dielectric 

material, two important characteristics were primarily investigated: 

1. The quality of the gate-dielectric interface with silicon 

2. The gate-dielectric breakdown strength 

In order to test a dielectric for these two properties, it was incorporated into both a 

metal insulator metal (MIM) structure and a metal insulator semiconductor (MIS) 

structure, and two tests were performed: fast interface state density test, and dielectric 

breakdown test. The results presented here are for the best samples of silicon dioxide and 

silicon nitride. The method of arriving at the optimum parameters is rigorously described 

in the following two chapters. After growing and testing several different dielectrics by 
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RF-CVD, a decision was made as to which dielectric possessed the best qualities based 

on these two criteria. 

4.2 Dielectric Breakdown Test 

Significant electron tunneling can take place when a large electric field is applied 

across an oxide layer, eventually reaching a point of catastrophic dielectric breakdown. 

Once the dielectric breaks down, large conduction currents can pass through it rendering 

the device useless, and in irreversible. Therefore a high electric breakdown is a desired 

and useful property. It should be noted that the breakdown strength is not an average 

characteristic over the device area, but is governed by the weakest defect spot across its 

surface [24]. The field across the dielectric at which the breakdown occurs is the 

breakdown field. 

We generally observe two types of dielectric breakdown characteristics in silicon 

devices [25]. In the first type, the dielectric breaks down rather abruptly, either on the 

current-time plot or on the current-voltage plot. In the second type, the dielectric breaks 

down gradually or softly and can be observed with similar plots mentioned above. 

Generally thick oxides (>100nm) break down abruptly, but thin oxides (10nm) often 

show soft breakdown behavior. In soft breakdown characteristics, the current keeps on 

increasing until the measurement is limited by the compliance limit of the current meter. 

For this reason, a dielectric can be defined to have broken down once the current through 

it has exceeded some arbitrary, but conveniently measurable unit. Usually, this value is 

defined at 10-10A/cm2 [26] of current through the dielectric by most authors, and we 
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would go by the same definition in our work unless there is any abrupt breakdown 

observed. 

In this test the breakdown strength of PECVD silicon dioxide and silicon nitride 

was examined by ramping up the gate voltage on a MIM structure until breakdown 

occurred or we had reached the limit of maximum voltage. An HP 4156A parameter 

analyzer was used to ramp up the gate voltage and measure the gate current. 

The electric field breakdown of the silicon nitride ranged from 3.8 MV/cm to 5.2 

MV/cm for the devices tested, and over 4.5MV/cm for the silicon dioxide samples. For 

dielectrics with low defects the breakdown field can be as high as 10 MV/cm or more 

[24]. Dielectrics with pinholes typically have breakdown fields around 1 MV/cm [24]. 

  An important parameter to note is the ramp rate of the applied voltage when 

evaluating the dielectric breakdown. A smaller ramp rate results in reduced breakdown 

strength, as it corresponds to a longer stressing time and hence more charge injection 

until breakdown [24]. For our experiments on dielectric breakdown a ramp rate of 

100mV/s was used. 

4.3 Interface State Density Test 

At the Si-SiO2 interface, the lattice of bulk silicon and all the properties associated 

with its periodicity terminate [21], and localized states with energy in the forbidden 

energy gap are introduced at or very near to the interface. Thus, interface defect density 

refers to the number of atoms with dangling or unsatisfied bonds per unit area at the 

interface of two materials. The charge of the defect or trap can be positive, negative, or 

neutral, and might even change during device operation [21]. Dielectrics having an 
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excellent interface with silicon have defect densities in the order of 109-1010 cm-2eV-1 

[21]. 

There are several reasons why reducing the interface defect density is important:  

• Traps can terminate electric field lines from the gate or contribute to them resulting in 

an altered threshold voltage [28].  

• The trapped electrons and holes in these surface states can act as charged scattering 

centers for the mobile carriers in the surface channel and thus lower their mobility [29].  

• The interface states can act as localized generation-recombination centers, thereby 

adding a surface leakage current to the device [30]. 

  In view of the above, it is very important to minimize interface state defect 

density by an appropriate fabrication process in order to have predictable and 

reproducible transistor behavior. In general for a given fabrication process, the interface 

trap density depends to a great extent on the orientation of the substrate orientation. The 

interface state defect density is the lowest for crystalline silicon oriented in the <100> 

plane, followed by <110>, and being the highest in <111> oriented planes [25]. In this 

work, our PECVD deposited nanocrystalline silicon was predominantly oriented in the 

<220> and <111> directions, and is therefore expected to have a higher interface defect 

density as compared to <100> oriented crystalline silicon. Hydrogen atoms are very 

effective at tying up loose or dangling bonds at the dielectric/semiconductor interface, 

and can play a role in reducing the interface defect density [25, 27]. 
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4.4 Estimation of Interface State Defect Density 

In order to characterize the interface between the semiconductor and insulator a 

capacitance-voltage or CV method was used.  In this method two sets of CV curves were 

measured: one with a low frequency AC signal superimposed on the DC gate voltage 

(quasistatic) and the other with a high frequency AC signal superimposed on the DC gate 

voltage. Due to difference in carrier response times, different CV curves resulted from 

the low and high frequency cases. An approximate interface defect density value was 

then calculated from the difference in the two curves. 

We used a MIS capacitor structure for our C-V measurements, where I stands for 

an insulator and is either silicon dioxide or silicon nitride. A band diagram of a p-type 

metal oxide semiconductor (MOS) capacitor with interface states under a positive gate 

bias is shown in figure 4.1 [31]. 

                                  

                          Figure 4.1 Band diagram of a p-type MOS capacitor [31] 
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As the surface potential is varied, the fast interface states or traps in the band gap 

can move above or below EF in response to the gate bias, since their positions relative to 

the band edges are fixed (figure 4.1) [31]. According to Fermi-Dirac statistics Energy 

levels above EF tend to be empty or in other words, fast interface states moving above EF 

tend to give up its trapped electron, while fast interface states moving below EF tend to 

capture an electron. Interface trap charges are states that have a trapped electron or hole. 

Since charge storage results in capacitance, the fast interface states give rise to an 

additional capacitance in the MIS structure. This additional capacitance is in parallel with 

the depletion capacitance in the channel [31], with the combination being in series with 

the insulator capacitance, Ci. The equivalent circuit diagram for the three capacitances (Ci 

= insulator, Cit = interface traps, Cd = depletion) associated with the MIS capacitor is 

shown schematically in figure 4.2 [31]. 

                                               

                          Figure 4.2 Equivalent circuit diagram of MOS capacitor [31] 

  

It should be noted that the interface defects which are able to change their charge 

state relatively fast in response to changes in the gate bias are termed fast interface states. 

These fast interface states can keep pace with low frequency variations of the gate bias 
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(1-1000 Hz), but not at extremely high frequencies (~1 MHz). Only those interface traps 

that can be filled and emptied at a rate faster than the capacitance-measurement signal 

can contribute to Cit, therefore the interface states only contribute to the low frequency 

case [31]. Inversion is only reached at low frequencies since the minority carriers needed 

for the inversion process are generated in the bulk of the semiconductor and if the 

frequency is too fast the minority carriers will recombine before participating in the 

inversion process. An important observation in this context is that we can notice 

inversion even at high frequencies in a MOSFET by grounding the source and drain 

electrode and performing C-V measurements on the gate electrode. This is because of the 

fact that the source and drain can supply the required minority carriers for inversion. 

Since the interface defect density affects the CV curves of both the low and high 

frequency cases differently, the interface defect density (DIT) can be determined from the 

difference in the two curves. An approximate value for the defect density is given by the 

following equation [31]: 

 

                           

Here, CHF and CLF are the capacitance values of the high and low frequency curves at the 

threshold voltage and Ci is the capacitance value of the MIS capacitor under strong 

accumulation. Figure 4.3(b) illustrates typical low and high frequency curves for a p-type 

MIS capacitor [31]. 
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Figure 4.3 (a) MOS operation [32] (b) Typical high and low frequency curves for a p-
MOS capacitor [8] 

4.5 PECVD Oxide Defect Density 

The following figure shows the experimentally observed C-V characteristics for 

our PECVD oxide with best overall properties. The MOS capacitor was fabricated on p-

type crystalline silicon wafers with silicon dioxide deposited by RF-PECVD at a 

frequency of 13.6MHz, and a power density of 50mW/cm2. The SiH4/N2O ratio was 30 

and the ratio of He/SiH4 was 200 with a deposition pressure of 400mTorr. Al was used 

for the top gate electrode and, chromium used as the bottom electrode was evaporated on 

the back-side of the wafer doped heavily by boron diffusion. A more detailed discussion 

on the deposition parameters would follow in the chapter on PECVD oxides.  
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       Figure 4.4 Normalized C-V plot for defect density estimation in PECVD oxide 

From the above figure we find that CHF = 0.24Ci, and CLF = 0.62 Ci. Using the 

above equation, we calculate the defect density of our PECVD oxide as 2.82×1011                

cm-2eV-1. This value of defect density is reasonably low for comparable values reported 

in the literature, indicating that we have been able to deposit a high quality oxide by 

PECVD. The defect density however, is large compared to thermal oxides and there is a 

considerable scope for reducing this defect density either by  a different deposition 

scheme, particularly by ECR-CVD or through proper annealing and passivation. 

4.6 PECVD Nitride defect density 

The C-V characteristics for our best PECVD silicon nitride sample is shown in figure 4.4 

below. This nitride was deposited at a pressure of 400mTorr, a power density of 
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75mW/cm2 with N2O/SiH4 and He/SiH4 ratios of 20 and 100 respectively. A more 

detailed discussion follows in the chapter on nitrides.   
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      Figure 4.4 Normalized C-V plot for defect density estimation in PECVD nitride 

From the above figure we find that CHF = 0.26Ci, and CLF = 0.82 Ci. Using the same, we 

calculate the defect density of our PECVD silicon nitride as   7.72×1011 cm-2eV-1.  

It is important to note that the defect density of silicon nitride is considerably 

higher than our PECVD deposited silicon dioxide, and is expected. For this reason, we 

decided to use silicon dioxide as our gate dielectric in this work. Nevertheless, silicon 

nitride has a better leakage performance and can be used in a gate dielectric stack with 

oxide to have both low defect density and low leakage in addition to acting as a diffusion 

barrier to hydrogen. To conclude, we have developed both high quality oxides and 

nitrides during the course of this work which can be put to appropriate use in future 

depending upon the need.  
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CHAPTER 5. PECVD SILICON NITRIDE 

 

5.1 Introduction 

Amorphous silicon nitride (a-SiNx:H) deposited by plasma enhanced chemical 

vapor deposition is widely used as passivation layers in conventional semiconductor 

processing, and also as gate dielectric in thin film transistors for large area electronics. 

For devices fabricated on glass substrates, the deposition temperature has to be below 

500oC, and good quality silicon nitride has already been achieved in these temperature 

ranges [33]. But, for devices to be compatible with flexible substrates and organic light 

emitting diodes, reduction in deposition temperature to 300oC and less is a primary 

requirement. The challenge therefore is to develop a material with good dielectric 

performance at such low temperatures. Despite this, some research groups have reported 

successful fabrication of a-Si:H TFTs using PECVD silicon nitride [33-35], with a 

gradual improvement in device performance [36]. 

For meeting the requirements of a gate dielectric in thin film transistors, the a-

SiNx:H material should be capable of withstanding high electric fields (~3MV/cm) 

without breaking down. In addition, it should have a low density of electronic traps, a low 

rate of charge trapping at lower electric fields, and a high quality interface with the 

semiconductor material. A survey of literature reveals that for optimal TFT performance, 

such as high field effect mobility and low charge injection into the nitride under gate bias 

stress, nitrogen rich a-SiNx:H (x>1.33) has to be used [37,38]. Such films possess a high 

band gap with a low trap density, and high breakdown strength. In this chapter, we report 
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on the growth and properties of a-SiNx:H films deposited by RF-PECVD at 300
oC using 

a mixture of ammonia, silane, and helium as source gases.  

5.2 Silicon Nitride Growth 

Silicon nitride was deposited using a parallel plate RF-PECVD reactor at a 

frequency of 13.6MHz, and is described in a previous section. The source gases used 

were silane, ammonia, and helium with the substrate temperature being set at 350oC. The 

actual substrate temperature was around 75oC–100oC less than indicated. The total gas 

pressure and the gas constituents were varied to study the respective effects on growth of 

the film.  

During plasma deposition of N-rich a-SiNx:H from silane and ammonia, 

aminosilanes Si(NH2)n≤4 have been identified to be the primary precursors of growth [39] 

from mass-spectrometry studies. The aminosilane molecules are formed in the gas phase 

from silane and ammonia radicals. This reaction mechanism is different from that using 

SiH4 and N2, where no Si-N precursors are formed in the gas phase, and the Si-N bonds 

are established in the film. NH3 has higher dissociation energy than SiH4, and so the 

formation of ammonia radicals requires higher electron energy in the plasma as compared 

to the formation of silane radicals. Therefore, to create an excess of ammonia radicals, a 

high plasma power and a high ratio of ammonia to silane is required [40]. It is under 

these circumstances only that a large majority of silane radicals get nitrided and prevent 

the formation of Si-Si bonds in the film, which otherwise result in poor electronic 

properties. 
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5.3 Reaction Mechanism 

Under optimal conditions, all silicon species are fully nitrided and yield tetra-

aminosilane according to [41]: 

                        SiH4 + 4NH3    �   Si(NH2)4 + 4H2 -------------------------- (1)  

This gas phase reaction shows the abstraction of four hydrogen atoms from a silane 

molecule and their replacement by NH2 groups.  

Si(NH2)4 molecules gets adsorbed on the film surface with a low sticking coefficient and 

promotes the growth of a dense and compact film [41]. The next step of the reaction is 

followed by ammonia abstraction resulting in a-SiNx:H and proceeds as [41]: 

                        3Si(NH2)4    �     Si3N4 + 8NH3 ------------------------------ (2) 

This reaction occurs at the surface or subsurface of the growing film, whereby 

NH2 groups are split off from the Si atom forms NH3 molecules by reacting with H from 

nearby N-H bonds. The NH3 molecules leave the growing film surface once they are 

formed. During this process, the Si and N atoms can cross-link, and the efficiency of this 

process depends upon the substrate temperature. For this reason at high temperatures both 

N and H content of the film is reduced, while at low temperatures three hydrogen atoms 

can be expected to be incorporated for each excess N atom. 

5.4 Silicon Nitride Deposition Considerations 

For realizing a high quality dielectric material, we studied the effects of pressure 

and reactant gas dilution ratios on the electrical and structural properties of silicon nitride 

films. The films were deposited in a parallel plate RF-PECVD reactor as described above 

with a plasma power density of 75mW/cm2. This power density was found to be 
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appropriate for achieving both high dissociation of ammonia, and a moderate growth rate 

for dense films. PECVD silicon nitride films which are nitrogen rich exhibit better 

electrical properties [39]. To promote nitrogen incorporation in the film, we increased the 

ammonia fraction in the gas mixture using NH3/SiH4 ratios of 15, 20, and 25 respectively.  

A hydrogen/silane ratio of 6 was used in depositing some silicon nitride films 

under the assumption of better passivation of the dangling bonds. These, films however 

showed a high leakage current, probably due to the presence of Si-H bonds, and the use 

of hydrogen was therefore discarded. To promote better ion bombardment, a He/SiH4 

ratio of 75 was used in these runs. The beneficial aspects of using a high helium dilution 

would be covered in detail in the chapter on oxides.  

5.5 Spectroscopic Analysis 

To find out the optimized deposition parameters for silicon nitride gate insulators, 

we prepared a series of films with varying flows of ammonia and silane at different 

pressures and keeping the temperature constant at 300oC. To reduce the sample 

preparation time, the breakdown strength of films deposited under varying chamber 

pressure were first evaluated using a MIM structure (to be discussed in a following 

section). The films prepared under an optimal pressure of 400mT were then characterized 

from their FTIR spectra to study the effect of NH3/SiH4 ratio. 

The FTIR spectra of the series of films are shown in the following figure 5.1. The 

absorption peaks in the spectrum correspond to well known vibration modes [43], and are 

typical of a silicon nitride film. 
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                                           Figure 5.1 FTIR spectra of silicon nitride 

The highest peak at around 800cm-1 corresponds to Si-N stretching mainly in the 

NSi3 configuration, and the shoulder at 1180cm
-1 represents the bending mode. The peak 

at 1550cm-1 is due to NH2 bending. The contributions due to SiHn and NH stretching 

appear at 2180cm-1 and 3340cm-1 respectively. A small shoulder at 3450cm-1 corresponds 

to NH2 stretching. 

It has been shown that silicon nitride films deposited with NH3/SiH4 ratio R≤ 30 

are inert to the absorption of moisture and are dense [43]. We find that with increasing R, 

the SiN mode in the FTIR spectra gets smaller. This can attributed to a lower Si-N bond 

density, and are thus indicative of a less dense material. The hydrogen in the film gets 

predominantly bonded to N, and we do not see the Si-H bond signature in the FTIR 

spectra. This is indicative of a good film, as the Si-H bonds can contribute to leakage and 

can also result in drift of threshold voltage over time due to gate bias induced 

degradation. We chose a NH3/SiH4 ratio of 20 for our gate dielectric as an optimal 
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compromise between achieving a nitrogen rich film and a film which is inert and thus 

stable in the long-run. The deposition pressure was varied between 100mT and 500mT, 

and the nitride film with best properties was attained at a deposition pressure of 400mT. 

Higher deposition pressure promotes better gas phase decomposition and the films are 

dense. Too high a pressure results in unwanted gas phase reactions and particle 

formation. The growth rate also increases with pressure and a high growth rate leads to 

poor quality film. The following table summarizes some of the selected results. 

 
Table 5.1: Deposition conditions and properties of SiNx films grown at 15MHz RF and 
300oC 
 
 
Power 
 

 
Pressure 

 
H2/SiH4 

 
NH3/SiH4 

 
He/SiH4 

 
  g.rate 

     
   VBD 

(MV/cm) 

 
Defect 
Density 

 
12W 
 

 
100mT 

    
   ---- 

      
   25 

     
   75 

 
80Å/min 

 
 2.09 

 
 N.A.(leaky) 

  
 9W 
 

 
100mT 

   
   ---- 

      
   25 

     
   75 

 
65Å/min 

 
 2.12 

 
 N.A.(leaky) 

 
 5W 
 

 
100mT 

    
   ---- 

      
   25 

     
   75 

 
55Å/min 

 
 2.89 

 
1.11×1012 
 cm-2eV-1 

 
 5W 
 

 
100mT 

     
    6 

    
   25 

     
   75 

 
50Å/min 

 
 1.56 

 
N.A.(leaky) 

 
 5W 
 

 
100mT 

  
   ---- 

    
   15 

     
   75 

 
48Å/min 

 
  3.18 

 
9.83×1011 
 cm-2eV-1 

 
 5W 
 

 
100mT 

  
   ---- 

     
   20 

     
   75 

 
51Å/min 

 
  3.81 

 
8.72×1011 
cm-2eV-1 

 
 5W 
 

 
400mT 

 
   ---- 

      
   20 

     
   75 

 
60Å/min 

 
  5.21 

 
7.72×1011 
 cm-2eV-1 

 
 3W 
 

 
400mT 

 
   ---- 

     
   20 

     
   75 

 
54Å/min 

 
  4.52 

 
7.48×1011 
 cm-2eV-1 
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5.6 Electrical Transport in Silicon Nitride 

Transport in SiNx thin films is generally discussed in terms of three mail transport 

mechanisms which are as follows: 

5.6.1 Ohmic conduction  

Silicon nitride films exhibit an ohmic region at low electric fields. Under low 

applied fields, the number of generated carriers is determined by the temperature. These 

trapped electrons or thermally excited carriers hop from one localized stare to the other 

leading to ohmic J-E characteristics given by Mott and Twose [38] as: 

                        JOH  = COHE exp(-βФOH) --------------------------------------- (1) 

where JOH is the current density, COH is the pre-exponential parameter, E is the electric 

field, β = (KBT)
-1, KB is the Boltzmann constant, T is the absolute temperature and ФOH is 

the thermal activation energy. 

5.6.2 Frenkel-Poole conduction 

This mode of conduction occurs typically at high fields and high temperatures. This 

process is usually strongly temperature dependent. The Frenkel-Poole conduction is 

described by the following equation: 

                 JFP = CE exp [(-q/KBT){ ФB – (qE/лεoεd)}] ------------------ (2) 

where, C is a constant determined by the trap density, ФB is the Frenkel-Poole barrier 

height, and εo and εd are respectively the permittivity of free space and the insulator 

dielectric constant. 
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5.6.3 Fowler-Nordheim conduction: 

This occurs typically at high fields and low temperatures, due to tunneling of carriers 

over a triangular barrier. The current density JFN resulting from tunneling by the Fowler-

Nordheim mechanism given by Weinberg [44] is: 

                 JFN = CFNE
2 exp( -EFN/E) --------------------------------------- (3) 

where, the pre-exponential parameter CFN is inversely proportional to the barrier height 

(Ф) of the nitride, and the exponential parameter, EFN ∞ (Ф)
3/2. 
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CHAPTER 6. PECVD SILICON DIOXIDE 

 
 

6.1 Introduction 

Silicon nitride has been the gate insulator of choice for active matrix liquid crystal 

displays using thin film transistors of hydrogenated amorphous silicon. This is because 

silicon nitride deposited by plasma enhanced chemical vapor deposition at 300oC and at a 

frequency of 13.6MHz is reasonably stable, forms a good interface with a-Si:H, and the 

TFTs are only n-type [45]. However, the rather small valence band offset with Si and 

wide valence band tail makes nitride a less good insulator for holes [46]. Silicon dioxide, 

on the other hand has a large band gap of 9eV and presents a large barrier for both 

electrons and holes. For this reason, low temperature silicon dioxide has become very 

attractive as gate material in flexible CMOS device applications involving polycrystalline 

and nanocrystalline silicon. Silicon dioxide has excellent material properties and forms a 

good interface with Si. Also, the trapping probability in SiO2 is several orders of 

magnitude lower than Si3N4 and a significantly smaller mechanical stress. 

Historically, PECVD oxides are porous. These oxides exhibit more pinholes, a 

lower breakdown electric field and larger trapping state densities than thermally grown 

oxides [47]. There have been numerous attempts to develop acceptable low temperature 

PECVD SiO2.  Batey and Tierney [48] have shown the need to use low growth rates by 

studying low temperature PECVD deposition. Lucovsky et al.[49] have developed a sub 

900oC process for conventional CMOS using a remote plasma, as an alternative to 

thermal oxide [50]. Many authors have compared various precursors such as silane or 
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tetra-ethoxy silane and O2 or nitrous oxide (N2O) including Yuda et al. [51]. Over the past 

decade, there has been a considerable effort to produce SiO2 films by ECR, by various 

groups including Herak et al. [52], Andosca et al. [53], and others [50, 54]. 

6.2 Deposition Mechanisms 

The reaction of conventional PECVD SiO2 without He dilution is given by [63]. 

                        SiH4 + N2O  �  SiO2 + 2H2 + 2N2 --------------------------- (1) 

Without any dilution, reactive gases easily fracture uncontrollably where virtually the gas 

phase reactions take over leading to particulates in the reaction chamber. Direct plasma 

excitation of SiH4 and N2O results in several reactive byproducts, including SiH, SiH2, 

SiH3, etc. These species can take part in heterogenous reactions leading to unwanted 

bonds such as N-H, Si-H, Si-O-H, Si-N, etc. in the deposited films [62]. 

The precursor molecules for PECVD SiO2 deposition was identified by Longeway 

et al. [64] as being the disiloxane [(SiH3)2O]. The SiH4/N2O mixture diluted by He was 

reported to increase the production of disiloxane precursor by Pai et.al. [62]. The reaction 

sequence for the deposition can be written as [65]: 

                        N2O + X*   �  NO + N* -------------------------------------- (2) 

                        NO + X*  �  N* + O* ---------------------------------------- (3) 

where, X* denotes the excited He atoms or excited electrons in the plasma, N* and O* 

are respectively the excited nitrogen and oxygen atoms. 

The excited oxygen atoms react with SiH4 to produce (SiH3)2O, and participate in 

surface reactions to produce SiOx films. The reaction for producing the disiloxane can be 

written as [65]: 
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                       He* + N2O  �  N2 + O* + He --------------------------------- (4) 

                       O* + 2SiH4  �  H2 + (SiH3)2O -------------------------------- (5) 

The surface reactions involve the elimination of H from the Si-H bonds of 

disiloxane via a reaction in which the terminal hydrogen atoms are replaced by oxygen 

atoms [65]. This surface reaction can be written as 

                       (SiH3)2O + O*  �  2SiO2 + 2H2 + H2O ---------------------- (6) 

6.3 Silicon Dioxide Film Deposition 

In this work we deposited silicon dioxide from a mixture of silane, nitrous oxide 

and helium in a Radio-Frequency CVD reactor. At this point it should be noted that we 

have chosen a low-frequency CVD for depositing silicon dioxide instead of using high 

frequency CVD. This is because, a higher amount of ion bombardment is necessary for a 

good dielectric with minimal voids and pinholes, and is unlike the case for 

nanocrystalline silicon where a high ion bombardment might lead to lattice damage. Thus 

by choosing a low frequency, we can have a controlled and beneficial amount of ion 

bombardment which coupled with a lower growth rate at low frequency leads to better 

oxide quality, as has been described in detail in the chapter on CVD. 

In the very beginning of our work on depositing silicon dioxide films by PECVD, 

we used a mixture of silane, nitrous oxide, and oxygen diluted in helium. The oxygen was 

supposed to aid in the oxidation of silane in addition to nitrous oxide. Though oxygen has 

been used by a few groups in depositing silicon dioxide, we have some reservations after 

doing some initial runs. In fact, we found out that the silicon dioxide film quality was 

worse for comparable films deposited with and without the use of oxygen. A possible and 
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logical reason for this is the fact that oxygen reacts explosively with silane producing 

dust. This dust formed inside the reaction chamber can get incorporated within the film 

leading to non-uniformities and voids resulting in poor electrical characteristics. 

6.4 Spectroscopic Analysis of SiO2 Films 

We performed Fourier Transformed Infrared Spectroscopy (FTIR) measurements 

on selected RF-PECVD deposited silicon dioxide films, since they provide the most 

direct information about the local bonding environment of constituent atoms. For FTIR 

measurements, SiO2 films of the same thickness were deposited on double polished 

crystalline silicon wafers after a piranha clean and buffered oxide etch. The following 

figure shows the FTIR spectra of two SiO2 films deposited at 300
oC, with He/SiH4 ratio 

of 200 and N2O/SiH4 ratios of 30 and 50 respectively at incident power of 50mW/cm2 at 

13.6 MHz RF. 
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Figure 6.1 Estimation of alloy composition from FTIR spectra of PECVD silicon dioxide 
films  
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There are three characteristic bands for SiO2 occurring at frequencies of 

approximately 1075cm-1, 800cm-1, and 450cm-1 and respectively correspond to stretching, 

bending and rocking motions of the twofold coordinated oxygen atoms [49]. It has been 

shown [62] that the frequency of the stretching band bears a linear relationship with 

SiOx(x<2) alloy composition from about 940cm
-1 for low concentrations of oxygen in a-

Si to about 1075cm-1 in stoichiometric SiO2. In our films, the stretching vibration has 

frequencies of 1071cm-1 and 1065cm-1 at deposition pressures of 400mTorr and 

100mTorr respectively. These correspond to an x-value ≈2 in SiOx implying that we have 

been able to produce close to stoichometric silicon dioxide. Note that at deposition 

pressure of 100mTorr, the stretching band peak drifts away (1065cm-1) from the 

stoichoimetric peak of 1075cm-1, while at 400mTorr this peak (1071cm-1) approaches that 

of thermal oxides. Moreover, the absence of Si-H vibration modes in our FTIR spectra 

confirms that the deleterious hydrogen bonds are at a minimum and limited by the 

resolution of the FTIR instrument. 

6.5 MOS Capacitors in Nanocrystalline Silicon 

When silicon dioxide is deposited by PECVD to form MOS capacitors with 

nanocrystalline silicon as the semiconductor material, the leakage current increases by 

orders of magnitude over the corresponding MOS capacitors fabricated using Si-wafers. 

The breakdown strength of the oxide decreases appreciably, and fails even at low electric 

fields of 105V/cm. Also, due to the high leakage current, the MOS capacitors were very 

unstable and even high-frequency C-V measurements were not possible. A critical 

investigation into the cause of this failure led us to believe that hydrogen from 
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nanocrystalline silicon could be the possible reason. More so, because the oxide were 

sufficiently thick to discount any effect caused by the roughness of the substrate. The 

experimentally observed oxide breakdown for both crystalline silicon and nanocrystalline 

silicon MOS capacitors are shown below for comparison. 
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         Figure 6.2 Illustration of breakdown problem in nc-Si:H MOS capacitors 

6.6 Hydrogen in Low Temperature SiO2 

At low deposition temperatures, the electrical properties of SiO2 deteriorate 

because of the role played by hydrogen and the presence of SiOH and SiH groups. 

Hydrogen has many beneficial and detrimental properties in Si based materials.  

Hydrogen passivates the Si dangling bonds thereby removing the gap states and 

improving electronic properties in hydrogenated amorphous silicon. However, the 

mobility of hydrogen under electronic excitation is the reason for electrical instability, 

such as the Stabler Wronski effect and bias stress instabilities in TFTs [55]. In silicon 

dioxide, hydrogen passivates the dangling bonds at the Si/SiO2 interface [56]. But, Si-H 
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bonds form states within the SiO2 gap, and so they are unstable to carrier trapping or 

electronic excitation [62]. The hydrogen released from interface Si-H bonds when broken 

by hot carriers is mobile and can react with other defect sites [58, 59].  

The O-H bond is also unstable to charge trapping in bulk SiO2, where it is a 

precursor of the non bridging oxygen [60]. OH groups can also be present as interstitial 

water molecules and are likely to be quite mobile in SiO2. It is therefore important, that 

the presence of both Si-OH and Si-H groups be minimized, particularly the Si-H bonds. 

Though the hydrogen content of PECVD silicon dioxide can be quite less than silicon 

nitride, but is more deleterious because of the wider gap and lower network density of 

SiO2 [61]. 
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          Figure 6.3 Illustration of the role of helium dilution in reducing breakdown 

6.7 Role of Helium Dilution 

During deposition of PECVD SiO2, it is important that the growth rate be 

sufficiently low so as to produce a more dense film with minimal pinholes and voids. For 
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this reason helium is commonly diluted with silane so as to effectively decrease the 

amount of SiH4 in the reaction while maintaining a large flow through the mass flow 

controller for accuracy. Whether helium provides any beneficial role at high temperature 

(>400oC) depositions of oxide is debatable, but at low temperatures, it is almost a 

necessity as we and others [66] have found out. A direct effect of a higher helium dilution 

is evident from figure 6.3, where an increase in He/SiH4 dilution ratio from 40 to 200 has 

resulted in a leakage current reduction through the oxide deposited over nanocrystalline 

silicon by about seven orders of magnitude. 

In the helium dilution approach, we use a rather high flow of helium for diluting 

the reactant mixture consisting of silane and nitrous oxide (N2O). Ion bombardment can 

be minimized during deposition since helium is light, inert and clean. Helium has the best 

thermal conductivity, and is capable of suppressing the unwanted gas phase reactions 

which results in a greater surface uniformity and less powder formation. Moreover, 

helium has a large cross section for excitation of energetic electrons which helps in 

igniting and maintaining the plasma.  
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        Figure 6.4 Schematic of ion bombardment mechanism using helium dilution [67]  

 

Importantly, at low substrate temperatures, helium ions provide the necessary 

momentum for surface mobility of species, effectively compensating for the thermal loss.  

Helium dilutions are capable of reducing unwanted Si-H, Si-OH, Si-N, N-H etc., which 

have been confirmed by Fourier Transform Infrared Spectroscopy [62]. These 

hydrogenous bonds, as discussed in the previous section, degrade the performance of 

PECVD oxide and reduce its density. Helium also enhances tendency towards 

stoichiometric composition by exciting oxygen to form SiOx films.  

6.8 Deposition Pressure and Oxide Leakage 

To study the effect of chamber pressure on the electrical characteristics of RF-

PECVD oxides, a set of two oxide films were grown at 100mTorr and 400mTorr 

respectively. 
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   Figure 6.5 Influence of deposition pressure on electrical properties of PECVD oxides 

 

From the above figure, we find that for the same thickness of oxide (~1100Å), the 

film deposited at 400mTorr exhibited a significantly lower amount of leakage as 

compared to the film deposited at a lower pressure of 100mTorr. This can be explained 

by the fact that at higher pressures, the film decomposition is more uniform due to a 

higher amount of ionization of gas molecules. Note that the growth rate also increases as 

pressure goes up, and so does the possibility of unwanted gas phase reactions.  

A delicate balance therefore has to be achieved for having both high quality film 

and minimum particulate formation by optimizing the deposition pressure. In our case, 

we found that a chamber pressure of 400mTorr leads to films with overall better 

characteristics.  
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CHAPTER 7. HIGHLY CONDUCTIVE DOPED FILMS 

 

7.1 Introduction 

 
 Recently there is a considerable interest in the growth of hydrogenated 

nanocrystalline silicon at low substrate temperatures with emphasis on low cost and 

flexible plastic substrates for application to large area and roll-roll production of thin-film 

transistors, photovoltaic and optoelectronic devices [68-71]. Hydrogenated 

nanocrystalline silicon has been shown to be much better than hydrogenated amorphous 

silicon in terms of device stability under light soaking in solar cells and gate bias stress in 

thin film transistors, in addition to possessing higher mobilities and lesser defects. 

Particularly, highly phosphorous doped and boron doped nc-Si:H have been shown to 

have much higher conductivities and better doping efficiencies than their amorphous 

counterpart. For these reasons, p+ nc-Si:H contacts for solar cells and thin film transistors 

are expected to provide low series resistance and better quality ohmic contacts. 

 Doping of amorphous silicon was demonstrated by Spear and Lecomber [72], 

Kanicki et al [73], He et al [74], and Kuo and Latzko have demonstrated highly 

conductive n+ uc-Si:H as source/drain contacts in a-Si:H TFTs. For optimized deposition 

conditions (Tsub>200
oC), room temperature dark conductivities are generally above 10-

3S/cm for p-type films [75,76]. Doped nc-Si:H films deposited above 200oC have 

optimized conductivity of 40S/cm for p-type films [77].  

  In this work, we discuss the improvement in conductivity and crystallinity of p-

type nanocrystalline Si:H layers by the use of post-deposition annealing. The p layers 
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were deposited at ~ 180°C from mixtures of silane, hydrogen, helium and diborane using 

ECR plasma deposition techniques. It was found that addition of He to H at first 

improved both the conductivity and crystallinity, but too much He led to an amorphous 

phase and lower conductivity. The as-grown films were measured for their crystallinity 

using both Raman spectroscopy and x-ray diffraction. The conductivity and activation 

energies were also measured. The films were then successively annealed at temperatures 

of 250oC, 300oC, 350oC, and 400°C. The crystallinity and grain size were found to 

increase as the annealing temperature increased. The greatest relative increase was during 

the initial annealing stages. The conductivity of the films increased significantly as a 

consequence of the annealing. Conductivities as large as 20 S/cm were obtained in very 

thin films (~50nm-150 nm). The corresponding activation energies were in the range of 

0.03 eV. When these annealed layers were used for MOSFET and PV devices, there was 

an appreciable increase in performance characteristics. 

7.2 Film Preparation 

The p+ nc-Si:H films were deposited by ECR-PECVD in a deposition system 

described elsewhere [78]. Corning 7059 glass and double-side-polished c-Si wafers were 

used as substrates. The vacuum base pressure before actual deposition was ~10-7 torr. A 

10 min hydrogen etch followed by a 40 min dummy of a:SiC:H with ppm TMB was done 

to reduce any oxygen introduced in the chamber while loading the sample. All 

depositions were done at a pressure of 5-6mT and at temperatures indicated. The ratio of 

diborane over silane was varied between 6% and 31% to find out the optimal doping ratio 

for an optimal hydrogen dilution of 99.7%. Then hydrogen and helium dilutions were 
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varied keeping the optimal doping ratio as fixed. Hydrogen dilution is defined as 

FH2/(FSiH4+FH2) ×100% and helium dilution as FHe/(FH2+FHe)×100%. The total flux was 

kept constant between 80sccm and 85sccm.  

7.3 Film Characterization 

 p+ nc-Si:H films deposited on 7059 Corning glass substrates were used for 

Raman, XRD, and electrical measurements. Selected p+ films were deposited on double 

polished c-Si wafers for FTIR measurements. The thickness measurements were 

performed using a Perkin-Elmer lambda 9. 

 For electrical measurements, coplanar Cr contacts 20mm long, 1mm apart, and 

1000Å thick was evaporated through a shadow mask in a thermal evaporator under a 

vacuum pressure of ~10-7torr. The dark conductivity σd was measured at room 

temperature. The activation energy Ea was calculated from σd = σ0exp(-Ea/KbT) 

 Raman Spectra for crystallinity in the backscattering geometry was measured 

using a Renishaw Raman microscope. To prevent thermally induced crystallization, the 

incident laser beam power was kept below 50mW. The peaks were deconvoluted and the 

crystalline volume fraction was deduced from the integrated Raman intensity ratio Xc= 

(I520)/(I520+ηI480), where I520 and I480 are the deconvoluted intensities of the Raman 

spectra in crystalline (520cm-1) and amorphous (480cm-1) peaks, respectively, and η, the 

scattering factor, was 0.8 [79]. The film structure was investigated using a grazing 

incidence XRD measurement. The average grain size was was found out using the 

Scherrer formula [80].   
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7.4 Conductivity and Hydrogen Dilution 

Figure 7.1 shows the dark conductivity and crystallinity as a function of boron 

doping with 99.7% hydrogen dilution, grown at 200oC with B2H6 as the doping gas. As 

the B2H6/SiH4 ratio is varied between 6% and 30%, we find that the conductivity initially 

remains fairly insensitive between 8% and 12% of B2H6 over silane, and the crystallinity 

remains essentially the same. Then as we increase the diborane flow, the crystallinity 

decreases while the conductivity reaches a maximum at around 59% C.F. After this the 

conductivity and crystallinity drops off sharply with increasing diborane leading to an 

amorphous material. 
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                     Figure 7.1 Variation of conductivity with B2H6/SiH4 ratio at 99.7% H.D                 

As the B2H6/SiH4 ratio is varied between 6% and 30%, we find that the 

conductivity initially remains fairly insensitive between 8% and 12% of B2H6 over silane, 

and the crystallinity remains essentially the same. Then as we increase the diborane flow, 

the crystallinity decreases while the conductivity reaches a maximum at around 59% CF. 
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After this the conductivity and crystallinity drops off sharply with increasing diborane 

leading to an amorphous material. 

 This is an interesting result as the highest conductivity occurs in a mixed phase 

material, wherein we can tune the bandgap depending upon the application and still not 

compromise much in conductivity. All previous work reported so far has focused only in 

the 0.5% to 1% diborane doping regime and lower hydrogen dilutions [75,76]. The 

reason we can have a comparatively wide doping window without compromising much in 

crystallinity is our relatively larger hydrogen dilution of 99.7%. For a film prepared with 

99% H2 dilution, the crystallinity remains essentially the same, but is accompanied by a 

sharp drop in conductivity as compared to an otherwise similar film prepared with 99.7% 

H2 dilution as shown in figure 7.2. 
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                 Figure 7.2  99% H.D. vs 99.7% H.D.  Note the drop in σd at 99% H.D.                                                                                                                                        

                       

 



www.manaraa.com

 67 

7.5 Hydrogen and Helium Dilution 

Figure 7.3 shows the change in conductivity and crystallinity when the deposition 

temperature is reduced from 200oC to 150oC. We find that though the change in 

conductivity is not appreciable, the crystalline fraction drops significantly from 81% to 

64%. 
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          Figure 7.3 Effect of growth temperature reduction on conductivity and crystallinity                         

By increasing hydrogen dilution, or reducing the diborane concentration, we can 

improve the crystallinity further, but a corresponding increase in conductivity could be 

limited by the passivation of boron atoms by hydrogen which become increasingly 

pronounced at lower deposition temperatures [75,81]. Moreover at lower temperatures, 

the concentration of defects (dangling Si bonds) increases, the concentration of di- and 

polyhydride-bonded hydrogen in the films increases, the mass density decreases, leading 

to poor film quality [16]. 
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               Figure 7.4 Improvement in σd and crystallinity upon He dilution at lower temp. 

It is widely known that presence of He in the plasma can affect the energy 

distribution mechanisms mainly through the He metastable species [71]. Also, addition of 

He causes activation of surface processes by very mild ion bombardment without 

damaging the material structure. Particularly, at low substrate temperatures, mild helium 

bombardment can compensate for the thermal energy loss and improve film quality [71]. 

Figure 7.4 shows the relative improvement in crystallinity and conductivity for a film 

prepared using both He and H2 dilutions as compared to a corresponding film with only 

H2 dilution. 

Figure 7.5 shows the variation of conductivity and crystallinity with He dilution 

shown as a percent of the total dilution, which has been kept constant at 99.7% with 

respect to silane. The B2H6/SiH4 flow ratio is kept fixed around 9%.  
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                       Figure 7.5 Effect of He dilution in addition to hydrogen dilution                                                       

We observe that as the He dilution is increased, the conductivity and crystalline 

fraction improves. This continues and reaches a peak at around 50% helium dilution, 

where the conductivity is about an order of magnitude higher than the corresponding 

sample without any helium dilution. As we increase the He dilution further, the 

conductivity drops off, and after 65% He dilution, the rate of decrease is significantly 

faster with the sample turning into amorphous with orders of magnitude reduction in 

conductivity. The reason behind this is that a larger amount of helium in the plasma 

destroys the lattice resulting in a highly disordered material.  

7.6 Thickness Dependence of Conductivity 

 Figure 7.6 shows the variation of conductivity and crystallinity as a function of 

film thickness. Within the range shown we observe an appreciable increase in 

conductivity as the thickness of the film increases from 65nm to 150nm.  
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           Figure 7.6 Conductivity and crystallinity as a function of thickness and anneal. 

The crystalline fraction of the film also improves as we go to higher thickness. 

The crystallinity and conductivity are expected to saturate after a certain thickness [71], 

and we have not probed beyond 150nm as this is supposed to be the maximum thickness 

for most device applications [70,71]. The grain size as determined from X-Ray 

diffraction was in the range of 20nm-25nm, while the activation energies were around 

0.03eV, showing an increasing trend with decreasing conductivity. 

7.7 Annealing Experiments 

 We present the results of annealing of some selected films in figures 7.6, 7.7, and 

7.8. The samples were annealed in increments of 50oC in a nitrogen atmosphere starting 

from 250oC and ending at 400oC. The dark conductivity and Raman spectra were 

measured after each annealing step. 
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                    Figure 7.7 Effect of anneal on films deposited at 200oC with 99.7%HD                                   

  For the films in figure 7.7, the deposition temperature was 200oC with 99.7% 

hydrogen dilution and with varying boron over silane ratio as indicated. Figure 7.8 shows 

the effect of anneal on conductivity for samples grown with varying He dilution and a 

fixed B2H6/SiH4 ratio of 9.2% at 150
oC.  
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             Figure 7.8 Effect of anneal on films deposited at 150oC with B2H6/SiH4 = 9.2% 
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For the nc-Si samples with low doping ratios we find that the relative increase in 

conductivity over anneal was not quite significant as compared to the nc:Si samples with 

high boron concentration which were amorphous. For nc-Si:H films the conductivity had 

increased by 8-10 times, whereas the amorphous type films showed an increase in 

conductivity by about two orders of magnitude. The relative increase in conductivity 

however was the largest in the initial stages of annealing. 

7.8 Discussion 

 We have investigated the growth and properties of p+ nc-Si:H at temperatures of 

150oC - 200oC by ECR-CVD. The conductivity and cyrstallinity of films deposited at a 

temperature of 200oC and 99.7% hydrogen dilution were studied as a function of the 

doping ratio.  

 It was found that the conductivity and especially the crystallinity of the film 

prepared at 150oC to be poor as compared to a similar film prepared at 200oC. Helium 

dilution was then introduced to improve the surface activation processes and reduce 

passivation of boron by hydrogen. The effect of helium and hydrogen dilution was then 

studied at an optimal doping ratio, which was kept fixed. A high conductivity of 1S/cm 

and a high crystalline fraction of 77% could be obtained for a film only 60nm thick. We 

have also shown that the conductivity increases with thickness reaching a value of 4S/cm 

for a 150nm thick film.  

             Annealing experiments on the films revealed that the improvement in 

conductivity was much more in amorphous as compared to nanocrystalline films. The 

maximum conductivity for a 150nm thick film rose from 4S/cm to around 20S/cm after a 
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400oC anneal in nitrogen ambient for 1 hr. This can be attributed to the passivation of a 

relatively large number of defects in the amorphous phase at lower anneal temperatures 

and formation of a crystalline material at anneal temperatures nearing 400oC.  

 In conclusion, we have developed adequately conducting and crystalline boron 

doped nc-Si:H for device applications to temperatures as low as 150oC. For even lower 

temperatures more research is needed for a better performance, which we believe can be 

achieved by adjusting the helium and hydrogen flows in an appropriate amount. 
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CHAPTER 8.  TFT CHARACTERIZATION 
 

8.1 Introduction 

The performance of the nc-Si:H TFTs may be characterized by several  

parameters such as on/off ratio, field-effect mobility (µfet), and threshold voltage (VT). In 

general, the µfet value of non crystalline silicon TFTs is much lower than that of a 

crystalline silicon MOS transistor. Therefore, the aspect ratio W/L of the devices must be 

large in order to obtain reasonable levels of the drain-source current (in the range of 1 

µA). Low value of VT (several volts) is necessary in order to assure the TFTs 

compatibility with conventional CMOS ICs. The on/off ratio of a thin film transistor 

provides us with an overall measure of its feasibility in practical device applications. An 

on/off ratio around 106 is a basic requirement for a thin film transistor for display 

applications. For CMOS type applications, the mobility should also be high in addition to 

the above requirements of a high on/off ratio with a low sub-threshold slope.   

8.2 MOSFET Theory 

 
 

 

            Figure 8.1 Illustration of n-channel MOSFET biasing and dimensions [32] 
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According to the theory of the MOSFETs, the transistor enters in saturation 

regime when VDS is greater than VSAT = VGS-VT. This condition is accomplished when 

VDS = VGS. The following equations for the drain-source current are valid in saturation 

regime [83]. 

          2)(
2

1
TGSoxfetDS VVC

L

W
I −= µ   --------------------------------- (1)                                      

           
L

Wt
C ox

roox

.
.εε=  -------------------------------------------- (2) 

where µfet is the field effect mobility, Cox is the gate oxide capacitance, εo is  the vacuum 

permitivity, εr = 3.9 is the gate oxide relative dielectric permitivity, tox is the gate oxide 

thickness, W is the channel width and L is the channel length. The slope of the curve 

obtained by plotting the square root of the drain current against gate voltage from 

equation (1) gives us the saturation mobility of the device, and the threshold voltage from 

the x-intercept.  

8.3 Bottom-Gate N-Channel nc-Si:H TFTs 

8.3.1 Experimental results 

The following figures show the output characteristics of a bottom-gate 

nanocrystalline silicon TFT with W = 200µm and L = 30µm. The source and drain 

contacts were Al over n+ a-Si:H deposited by ECR-CVD and defined by RIE etch. The 

channel region consisted of an initial a-Si:H layer grown for 2m30s, followed by nc-Si:H 

deposition with 92.5% H2 dilution and at a pressure of 100mT. The indicated substrate 

temperature was 350oC, and the channel was approximately 200nm thick. 
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Figure 8.2 Transfer characteristics at drain           Figure 8.3 Output characteristics for the  
voltage of  10V with W/L = 200/35                       TFT at varying gate voltages 
 

From the slope of following plot of sqrt (ID) vs VGS, the value of electron mobility in the 

saturation region is calculated by a method described in the previous sections. 
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Figure 8.4 Extraction of mobility and threshold voltage with evidence of mobility 
decrease at high gate voltages 
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From the three plots above, the device properties could be deduced as: 
                       µn = 0.31cm

2
V

-1
s
-1
    VT = 3.2V      ON/OFF ≈ 10

6
 

8.3.2 Discussion  

Though the values of threshold voltage and ON/OFF ratio are quite reasonable, 

the electron mobility at 0.31cm2V-1s-1 was quite low, and a value close to 1cm2/V-1s-1 was 

expected.  

From the plot of drain current with drain-source voltage, we could clearly see that 

the curves corresponding to different gate voltages are crowded at low drain-source 

voltages. This indicates that relatively high resistive contacts are present in the drain and 

source areas. This observation led us to conclude that the contacts need to improve for a 

better device performance. 

8.3.3 Device with improved contacts 

In view of the above observations, a sample identical to the previous one was 

made using a different parameter for doped layer deposition. The deposition pressure was 

now reduced and the plasma power was increased so as to make the doped n+ layer more 

crystalline. However, a systematic investigation into optimizing this in conductivity and 

crystallinity was not done due to a lack of time. The following figures show the result of 

this experiment. 
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              Figure 8.5 Transfer characteristics of the TFT with improved contacts 
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              Figure 8.6 Output characteristics of the TFT with no current crowding 

This device yielded the following characteristics: 

µn = 0.72cm
2V-1s-1    VT = 6.5V      ON/OFF ≈ 5×10

5 
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8.3.4 Discussion 

From the plot of drain-current and drain-source voltage in the second sample, 

current-crowding is not observed at low drain-source voltages with varying voltage at the 

gate. We thus conclude that the new n+ contacts were of better quality and the series 

resistances were low. For the same channel material, the electron mobility had now 

increased by over two times. 

But this improvement came at a price. The ON/OFF ratio had now decreased by 

half over the previous sample. The threshold voltage too had increased, but was within 

the acceptable margin. Ideally, one would expect a better ON/OFF ratio with better 

contacts as the n+-p-n+ double diode should be more effective in preventing carrier flow 

between the contacts below threshold gate voltage. 

The reason for this behavior could be attributed to the doped layer deposition 

again. Since the pressure was low, and power was high, there was higher ion 

bombardment, and hence more diffusion of phosphorous into the intrinsic layer, making 

it lightly n-doped. A direct evidence of this came from RIE etch, whereby, the sample 

had to be etched for a longer duration to reduce the dark current to a minimum. 

8.4 Top-Gate N-Channel TFT 

A top-gate n-channel TFT was fabricated with silicon nitride as the gate 

dielectric. The thickness of the gate dielectric was 250nm. Silicon dioxide deposition was 

still not device grade by then owing to leakage problems from hydrogen diffusion from 

the bottom nc-Si:H channel material. The channel deposition parameters were the same 

as the bottom gate devices. This TFT produced the following results: 
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                         µn = 0.35cm
2
V

-1
s
-1
    VT = 4.1V      ON/OFF ≈ 5×10

5
 

8.4.1 Discussion 

The electron mobility from the top-gate device was low as compared to the 

bottom-gate device shown previously. This is a bit surprising, as the channel layer 

mobility is supposed to be the maximum at the top. But here, the dielectric was silicon 

nitride, which had a large number of defects compared to thermal oxide as gate. So the 

gain in channel layer mobility was now offset by a much more defective dielectric, 

leading to more scattering of carriers at the interface. Also here, the processing is much 

more complicated and therefore, a much greater chance of contamination. 

Though the device mobility was low, we were still satisfied by the fact that a 

working device could be fabricated. And since this was the first working device, scope 

for improvement always remained. A later publication from Arokia Nathan [84] showed 

a mobility of 0.85cm2V-1s-1 with silicon nitride gate dielectric, long after he had 

demonstrated a mobility of 150cm2V-1s-1[85] with silicon dioxide as gate dielectric. With 

this background, and an improved silicon dioxide, we moved on to fabricating p-channel 

TFTs as not much has been done in this area. 

8.5 Bottom-Gate P-channel nc-Si:H TFTs 

8.5.1 Initial results 

The first set of devices was made with the same intrinsic nanocrystalline silicon 

material as the bottom-gate n-channel devices. The doped p+ layer was as usual, 
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deposited using remote plasma ECR-CVD with 99% hydrogen dilution with a B2H6 to 

silane ratio at around 26%. The deposition temperature was close to 125oC. 

The devices which followed had very poor characteristics. The hole mobility was less 

than 0.01cm2V-1s-1, very high threshold voltages (~-25V) and extremely poor ON/OFF 

ratios (~102).  

The first suspect for these problems was attributed to the p+ contacts. When a 

similar doped film was made on 7059 substrate, it showed a conductivity of ~ 10-5S/cm, 

as opposed to 0.22S/cm for a-Si:H n+ doped layers, and was amorphous. So, a rigorous 

experiment to improve this was required, and as shown in a previous section, the 

conductivity could be increased to 1S/cm in only a 60nm thick film. 

The following plots show the p-channel TFT achieved with these improved contacts. 
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         Figure 8.7 Transfer characteristics of our initial bottom gate p-channel TFT 

 



www.manaraa.com

 82 

                       

-1.0E-06

-8.0E-07

-6.0E-07

-4.0E-07

-2.0E-07

0.0E+00

2.0E-07

4.0E-07

6.0E-07

8.0E-07

-30 -25 -20 -15 -10 -5 0

Drain-Source Voltage (V)

D
ra
in
-S
o
u
rc
e
 C
u
rr
e
n
t 
(A
)

VG = -20V

VG = -23V

VG = -26V

 

Figure 8.8 Output characteristics of the p-channel bottom gate TFT with better contacts 

 

The gate oxide thickness was 120nm, and device dimensions were W = 200µ and L=40µ 

       Device results:   µp = 0.048cm
2
V

-1
s
-1
    VT = -10V       ON/OFF ≈10

5
 

8.5.2 Discussion  

As we can see, improvement in contacts led to an increase in hole mobility by 

about five times, with very reasonable threshold voltage and ON/OFF ratios. Also, there 

was no evidence of any current crowding, which further confirmed that the contacts were 

of good quality. 

After taking care of the contacts problem, we shifted our focus to improve the 

nanocrystalline silicon channel layer deposition to improve the mobility. The next section 

discusses this strategy and the results of the same. 
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8.6 Growth Strategy for Channel Material 

8.6.1 Bottom gate optimization 

For bottom-gate devices, the most critical factor which determines mobility is the 

interface between the oxide and the nanocrystalline silicon channel. Since the initial 

layers during nanocrystalline silicon growth are known to be amorphous, it is very 

essential that good crystallinity is achieved very quickly. It is supposed the effective 

device mobility is controlled by a very thin region in the channel (~ 20nm) and oxide 

interface, and as shown in the following schematic, and optimizing this region is our 

goal.  

      

  Figure 8.9 Illustration of nc-Si:H deposition scheme for improving mobility 

 

Now, there are some practical problems when to try to reach this idealistic target. 

Direct deposition of nanocrystalline silicon on top of the oxide leads to peeling off of the 

film from the surface due to a lot of stress in the nc-Si:H material. Moreover, 

nanocrystalline silicon deposition involves a high plasma power and thus higher ion 
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bombardment, which in turn destroys the crucial oxide interface, resulting in a large 

number of defects, which are catastrophic to the device performance.  

To take care of these problems, the starting film on the oxide is a very thin layer 

of amorphous silicon, followed by nc-Si:H deposition. However, the thickness of this 

amorphous silicon layer has to be kept as small as possible, and in the next section we 

show the improvement in mobility as we progressively make this thinner. Though an 

ideal thing would be to remove this amorphous silicon layer altogether, we have not met 

with success so far, and are involved in the process of reducing this to a feasible 

minimum. 

For rapid crystallization, we resort to a very high hydrogen dilution (~99.7%) in 

the initial nanocrystalline growth phase and at a low power to minimize the deleterious 

effects of ion bombardment. The growth rate is also kept low to have a more dense 

structure. Thereafter the hydrogen dilution is reduced and the power increased 

progressively so as to improve the overall growth rate without compromising on the 

crystallinity.  

The reason for the high growth layers serves two purposes. First, it provides us 

with a larger margin for RIE etch of the doped p+ layer on top, and keep the plasma 

damage from bombardment confined at a safe distance from the oxide interface. 

Secondly it prevents diffusion of dopant atoms from reaching the channel region, thereby 

keeping the dark current at reasonable levels. 

Having said all this it is also necessary to point out that the channel layer 

thickness cannot be increased much to avoid collection problems. This requires a fine 

balance and appropriate adjustments have to be made after troubleshooting. 
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8.6.2 Results 

The following plots below show the characteristics of the best device obtained 

from the strategy outlined above. 

                        

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

-35 -30 -25 -20 -15 -10 -5 0

Gate-Source Voltage (V)

D
ra
in
-S
o
u
rc
e
 C
u
rr
e
n
t 
(A
)

VD = -12V

 

            Figure 8.10 TFT transfer characteristics showing drive current improvement  
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           Figure 8.11 Output characteristics of the TFT showing overall improvement 

                                µp = 0.172cm
2
V

-1
s
-1
    VT = -12V       ON/OFF ≈10

4 
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8.6.3 Summary of nc-Si:H deposition 

 

� 2min 30s amorphous, 92.5% H2 dilution for nc-Si:H at 22W, 100mT 

                      µp = 0.048cm
2V-1s-1    VT = -10V       ON/OFF ≈10

5 

� 1min 30s amorphous, 98.9% HD, low power(9W) at start and graded to 96.6% 

HD, 22W at end   

                      µp = 0.112cm
2V-1s-1    VT = -12.5V       ON/OFF ≈10

4 

� 1min 30s amorphous, 99.7% HD at start and graded to 96.6% HD at end 

                      µp = 0.172cm
2V-1s-1    VT = -12V       ON/OFF ≈10

4 

8.7 Subthreshold slope 

8.7.1 Basic physics 

Depending on the gate and source-drain voltages, a MOSFET device can be 

biased in one of the three regions as shown in the following figure. 

 

 

 

 

 

 

 

                         Figure 8.12 Regimes of MOSFET operation [25]      
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The linear and saturation regions of MOSFET operation have been discussed 

above and characteristics of the device in the subthreshold region of operation (VG<VT) 

will be the subject of our discussion here. The drain current for VG<VT on a linear scale 

appears to be zero on a linear scale as seen in figure 8.12. On a logarithmic scale, 

however, this current descends gradually to zero since the inversion layer charge density 

follows an exponential dependence on VG and quantified by an inverse sub-threshold 

slope given by [25]: 

              S = 1/ 







g

DS

dV

Id )(log10
 = 2.3 

q

mKT
 = 2.3 

q

KT







 +
ox

dm

C

C
1 --------------- (3) 

 where, IDS and VG are the drain-source current and gate voltage respectively, K is the 

Boltzmann Constant, T is the absolute temperature in Kelvin, q is the electronic charge 

and Cdm and Cox are the depletion-layer and oxide capacitances respectively. The value of 

S is typically 60mV/decade for state of the art crystalline silicon MOSFETS, and can be 

calculated directly from equation (3) from the experimentally observed IDS-VG 

characteristics. Leaving the detailed discussions for a later section, it would be suffice to 

say that except for a slight dependence on bulk doping concentration through Cdm, the 

subthreshold slope is rather insensitive to device parameters and is only a function of 

temperature [25]. 

8.7.2 Experimental characterization 

Experimentally, the subthreshold slope can be extracted by performing a linear fit 

to the logarithmic variation of drain-source current versus gate-source voltage in the 
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region below threshold. Figure 8.13 below illustrates this procedure for one of the 

devices. 
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              Figure 8.13 Extraction of sub-threshold slope from transfer characteristics 

From the above figure, we find the sub-threshold slope for the device from the reciprocal 

of the slope as 0.691 V/decade. 

8.8 High Mobility and Low Leakage Devices 

8.8.1 Practical problems 

All of the devices discussed above were still suffering from high leakage current 

in the off state with high threshold voltages. The mobility had improved a lot over the 

initial devices but was still low for any feasible applications. The above devices provided 

us with the learning curve that the key to an even higher mobility lies in a careful 

optimization of the hydrogen dilution to achieve a crystalline material fast enough 
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without damaging the oxide interface. As will be discussed below, an even higher 

hydrogen dilution with low initial VHF power improved the mobility significantly. The 

high leakage problem was solved by doping the nanocrystalline silicon channel material 

with ppm levels of phosphine and also by passivating the device with overlayer of silicon 

dioxide. The threshold voltage could be brought down to lower levels by this novel 

method of depositing the channel material, ensuring that interface and trap centers are 

kept to a minimum. In the following sections, we would briefly discuss each of the 

innovative strategies and their role in improving device performance. 

8.8.2 Improved results 

Without going into the details and following an approach discussed in the 

previous sections, the optimized final channel nanocrystalline silicon material deposition 

parameters with VHF-CVD was as follows: 
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Figure 8.14 Transfer characteristics of a best bottom-gate TFT showing a very high drive 
current of 0.1mA                
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Figure 8.15 Extraction of mobility from square root of drain current as a function of gate 
voltage 
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  Figure 8.16 Output characteristics of the TFT showing classical MOSFET behavior  

From the plot of drain-source current vs drain-source voltage in fig() we find that 

the TFT followed classical p-channel MOSFET characteristics with no evidence of 

current crowding at different gate voltages. The reason for this was the highly conductive 



www.manaraa.com

 91 

nanocrystalline silicon p+ contacts which led to minimal contact resistance at the source 

and drain regions. An important thing to note in this context is the high value of drive 

current (100µA) achieved in this device with a low threshold voltage as evident from 

figure 8.14. This is the first time that such a high value of drive current has been achieved 

in nanocrystalline silicon p-channel TFTs. The mobility and threshold voltage have been 

extracted from the linear plot of figure 8.15 as discussed in a preceding section. Devices 

with this recipe showed a high mobility of 1.6 cm2/V-s accompanied by a low threshold 

voltage of -4.5V. This is the best mobility reported so far in literature for similar devices.  

8.9 Reduction in Leakage with Channel Doping 

8.9.1 Underlying theory 

As mentioned above the leakage current in earlier devices was high at around 1nA 

in the off-state. This coupled with a low mobility led to an ON/OFF ratio of ~ 104, which 

was really low for any practical applications, which necessitate an ON/OFF ratio of 106 

and above. From classical device physics theory, we know that by increasing the doping 

in the channel material, leakage through the source and drain junctions are reduced due to 

formation of stronger reverse biased p-n junctions. This leads to a reduction in the off 

state current in the device. The penalty that we incur in this process is a reduction in 

mobility due to impurity scattering. The threshold voltage also increases as we increase 

the channel doping and is shown in the following figure. 
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   Figure 8.17 Variation of mobility and threshold voltage with channel doping 

The increase in threshold voltage with channel material doping (ND) is given by [83]: 

                       VTN = 
ox

SD

C

Q |(max)|
 + VFB + 2Фfp ------------------------------ (4) 

VTN is the threshold voltage for n-channel MOSFET, Cox is the gate oxide capacitance, 

and 2Фfp is the surface potential at inversion. 

The maximum space charge density per unit area of the depletion region, QSD(max) is 

given by 

                        |QSD(max)| = eNaxdT = eNa 







a

fps

eN

φε4
 -------------------------- (5) 

where, Na is the acceptor doping concentration, xdT is the width of the depletion region, 

and e is the electronic charge. 

1/2 
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From equation (5), we find that the threshold voltage should increase roughly as 

the square root of doping concentration (NA/ND), since the other factors in equation (4) 

are negligible, and this is indeed the case, as shown in the following figure:  
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Figure 8.18 Experimentally observed square-root dependence of threshold voltage on 
body doping of TFT 

8.9.2 Experimental results 

A closer look into figure 8.17 reveals that the experimental results indeed follow 

the theoretical predictions. This further tells us about the good reproducibility of devices 

in between runs as any unintentional doping in the form of moisture remaining in the 

chamber would have masked this important trend. Great care was taken to ensure the 

same fabricating conditions by performing 20 minute hydrogen plasma etch to drive 

moisture out of the chamber before any channel material deposition. Equally important to 

note is the fact that all previous history of silicon dioxide deposition is eliminated in this 

process. As a passing note, it may be mentioned that the very high hydrogen dilution used 
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in nanocrystalline silicon channel material deposition helped to etch off remaining 

contaminants. 

The following figure shows the effect of ppm phosphine doping on the leakage 

current and subthreshold slopes for the devices investigated. 
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Figure 8.19 Variation of ON/OFF ratio and sub-threshold slope as a function of ppm 
phosphine doping in the channel 

8.9.3 Discussion 

From the above, we find that the leakage current decreases with increasing 

channel doping as predicted, but at higher doping levels (30ppm) the leakage scenario 

becomes worse. This can be attributed to the recombination current originating from 

defect centers at the source and drain junctions. The subthreshold slope increases as we 

increase the doping, and is along expected lines. The minimum subthreshold slope for our 

device with no doping was around 700mV/decade. This is very high as compared to the 

ideal subthreshold slope of 60mV/decade, but is lower or comparable to values reported 
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in the literature. We don’t know the exact reason behind this, but a possible explanation 

is the presence of a large number of defects inherent in the channel material itself. Also 

further studies need to be done on improving the nanocrystalline silicon/silicon oxide 

interface and a solution could lie in passivating the interface defect sites with some 

special plasma treatment or through annealing. 
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CHAPTER 9. TFT FABRICATION BY ALUMINUM DIFFUSION 

 

9.1 Introduction 

It is well known that Al behaves as an acceptor state in silicon. Since nc-Si:H is 

porous as compared to crystalline silicon, it was expected that Al would diffuse into the 

film when subjected to a low temperature anneal and dope the film p-type. Conventional 

method of depositing heavily doped nanocrystalline silicon films by in-situ CVD of 

diborane and silane for source and drain contacts suffers from several drawbacks. Firstly, 

the film is conformally deposited and requires extra lithography and reactive ion etch 

steps to define the source and drain regions in addition to the deposition step itself. 

Secondly, the etch margins have to be appropriately achieved in a small error window to 

exclude the possibility of overetch or underetch. These assume more significance for 

CMOS type nanocrystalline silicon thin film transistor devices wherein the level of 

complexity for putting in this additional layer becomes too high.  

In view of the above, we developed a novel method of fabricating nanocrystalline 

silicon thin film transistors with aluminum diffused source and drain regions, which serve 

the dual purpose of providing low series resistance contacts by selectively doping the 

material and also serving as the metal contacts. The method of fabricating the same are 

outlined below: 
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9.2 Aluminum Diffused Diodes 

9.2.1 Concept and fabrication 

We begin by demonstrating the concept of aluminum diffusion in nanocrystalline 

silicon by forming a diode structure. The structure of this diode is shown in the following 

figure: 

 

 

 

 

 

 

             Figure 9.1 Structure of Al-diffused nc-Si:H p-i-n diode 

As can be seen from above, the diode is fabricated by depositing a thick layer of heavily 

doped n-type amorphous silicon film on stainless steel substrates by VHF-CVD. This 

layer is made amorphous and sufficiently thick (0.4µm) so as to prevent any shorts 

originating from the surface roughness of the substrate. After this, we grow an undoped 

nanocrystalline silicon film about a micrometer in thickness. Aluminum is then 

selectively evaporated through a shadow mask in a thermal evaporator at a rate of 15-

20Å/s. The base pressure in the evaporator is ~10-7 torr prior to evaporation. The contacts 

thus formed are 5mm in diameter and has a thickness of around 2100Å. The sample is 

then subjected to successive anneals of 30 minutes duration each at temperatures of 

Al contacts 

Al diffusion 

nc-Si:H 

n+ nc-Si:H 

SS substrate 
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300oC, 350oC and 400oC in a furnace under nitrogen ambient. The devices were then 

characterized after each annealing step and the results are shown in the following: 

9.2.2 Effects of anneal 
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                               Figure 9.2 Comparison of anneal on diode I-V characteristics 

Although at a first glance, the I-V characteristics of the as-deposited and 300oC 

annealed devices look very similar in figure 9.2, a subtle difference exists. Without any 

anneal, the Al metal just forms a Schottky contact with the intrinsic nc-Si:H material. We 

also know from device physics that the I-V characteristics for a Schottky barrier and a p-

n junction are similar, except that the ideal reverse saturation current density for a 

Schottky barrier is orders of magnitude larger than an ideal p-n junction. This is because 

of the fact that the current in a p-n junction is determined by the diffusion of minority 

carriers, whereas the current in a Schottky barrier diode is determined by the thermoionic 

emission of majority carriers over a potential barrier. Due to this difference in reverse 

saturation current, the Schottky diode turns on at a lower voltage than the p-n junction at 
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forward-bias. From figure 9.2 we observe that for the non-annealed device, the turn-on 

voltage is ~0.3V, while for the 300oC annealed device, the turn-on voltage is ~0.6V, with 

a lower forward-bias current as expected. This happens because the Al diffuses into the 

nc-Si:H material upon anneal, and dopes the material p-type, forming a p-n junction as 

we had speculated. 
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                        Figure 9.3 Effect of higher annealing on diode I-V characteristics 

Comparing figure 9.2 and figure 9.3, we can see that a further annealing of the 

device for 30 minutes at 350oC, results in a performance loss over the corresponding 

anneal for 30 minutes at 300oC. The device now shows a significant amount of leakage, 

and after a 400oC anneal for 30 minutes, the device gets shorted, and no I-V 

characteristics could be obtained due to current limitations of the Parameter Analyzer. 

The reason for getting shorts can be many. Primarily, we believe that the Al metal is able 

to diffuse all through the small thickness of the film at higher anneal temperatures/time 

and lands up on the n+ or into the substrate back-contact causing a direct short. Another 
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reason can be attributed to the surface roughness of the stainless steel substrate, which 

can lead to several weak spots/pinholes providing a low-resistance path to the current. 

9.2.3 Diode ideality factor 
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Figure 9.4: Logarthmic plot of forward biased      Figure 9.5: Estimation of ideality factor                                     
                   I-V characteristics                                                   for Al-diffused diode        
 

Figure 9.4 shows the forward I-V characteristics for the diode formed by Al 

diffusion after anneal at 300oC for 30 minutes on a logarithmic scale. Figure 9.5 shows 

the recombination and diffusion current components plotted on a log current scale as a 

function of Va/VT. 

The total forward-bias current density in a p-n junction is the sum of the 

recombination and ideal diffusion current densities, and can be written as [83]. 

                       J = Jrec + JD ------------------------------------------------------- (1) 

where Jrec, and JD are given by  

                       Jrec = Jr0 exp 







KT

eVa

2
--------------------------------------------- (2)      
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                       JD = JS exp 







KT

eVa
 ------------------------------------------------ (3)      

and e, Va, K and T are the electronic charge, bias voltage, Boltzmann Constant and 

temperature respectively. 

In general, the diode current-voltage relationship can be written as [83]: 

                       I = IS 







−







1exp

nKT

eVa
 ------------------------------------------ (4) 

where the parameter n is called the ideality factor. For large forward bias voltage, n ≈ 1 

when diffusion dominates, and for low forward bias voltages, n ≈ 2 as recombination 

dominates. From figure 9.5 above, we calculate the values of ideality factors as n1 = 

1.011 and n2 = 2.029 respectively. These values are very close to the theoretical ideality 

factors for a p-n junction, and confirms that we have indeed been able to dope the nc-

Si:H material p-type by Al diffusion. 

9.3 Aluminum Diffused TFTs 

9.3.1 Concept and fabrication 

In this method of fabricating p-channel nanocrystalline silicon TFTs, we proceed 

along exactly the same steps as described earlier. The only difference is that we do not 

deposit the heavily doped p-type nanocrystalline silicon layer and directly proceed to do 

the metallization instead. After deposition of the nc-Si:H channel, Al was evaporated by 

thermal evaporation and source and drain contacts were defined by photolithography and 

etching. The sample was then annealed in a N2 ambient for one hour at a temperature of 

350oC to selectively dope the source and drain regions under the source and drain 
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aluminum to heavily p-type. The TFT was then characterized on an HP parameter 

analyzer.            

      

            Figure 9.6 Schematic cross section of an Al-diffused bottom gate nc-Si:H TFT 

9.3.2 Device characteristics 

We report the results for the thin film transistor deposited with an undoped 

nanocrystalline silicon channel material. For the sake of completeness, devices were 

fabricated and characterized with varying ppm phosphine doping in the channel, and the 

results were found to be identical with the devices described in the earlier section. The 

following figures show the device characteristics for the TFT with aluminum diffused 

source and drain contacts. 

                    

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

-35 -30 -25 -20 -15 -10 -5 0

Gate-Source Voltage (V)

D
ra
in
-S
o
u
rc
e
 C
u
rr
e
n
t 
(A
)

VD = -10V

VD = -5V

VD = -1V

W/L = 200µm/30µm

 



www.manaraa.com

 103 

            Figure 9.7 Transfer characteristics of an Al-diffused bottom gate nc-Si:H TFT 

 Figure 9.7 above shows the variation of drain-source current as a function of gate 

voltage for the aluminum-diffused TFT at fixed drain-source voltages of -10V, -5V and -

1V respectively. The device in this case had a width of 200µm with a drawn channel 

length of 30µm. The thermally grown gate oxide thickness was 1200Å. The field-effect 

mobility for this device was calculated to be 1.4cm2/V-s by a method described earlier, 

and the threshold voltage is -4.5V. The devices had a high ON/OFF ratio of ~107, which 

is the highest so far in comparable devices of its kind. In these TFTs, the off current is 

~10-12A and ~10-13A at drain-source voltages of -5V and -1V respectively. Such low OFF 

current values is a representative of low defect and impurity levels in the nc-Si:H channel 

material, and that we are not adding any more impurities into the channel under Al 

diffusion. 
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         Figure 9.8 Output characteristics of an Al-diffused TFT at varying gate voltages 
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  Figure 9.8 shows the output characteristics of the bottom gate nc-Si:H p-channel 

TFT formed by selective Al diffusion for the source and drain regions.  The output 

characteristics resemble classical p-channel MOSFET characteristics with no evidence of 

any current crowding at low-drain to source voltages. Therefore, we have been able to 

show that low-temperature Al diffusion can be employed to dope nc-Si:H heavily p-type 

and form low series resistance contacts for the source and drain regions of p-channel 

TFTs.                

9.3.3 Discussion  

In this work, we have systematically demonstrated for the first time a very simple 

method of doping nanocrystalline silicon p-type using low temperature aluminum 

diffusion. Firstly, by forming a n+/n/Al structure and then performing a low temperature 

Al diffusion we have shown how the output I-V characteristics changed from a Schottky 

barrier to that of a classical p-n junction upon anneal. Secondly, we have extended this 

concept to selectively dope the source and drain regions by Al diffusion to obtain 

classical p-channel MOSFET behavior from nc-Si:H TFTs. The greatest advantage of this 

process is that the fabrication becomes a lot simpler eliminating extra photolithography 

and dry-etching steps. A logical extension of this process would be to fabricate CMOS 

type thin film devices, where a selective doping using Al diffusion would lead to a huge 

process simplicity/cost advantage. 
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CHAPTER 10. ADVANCED DEVICE CHARACTERIZATION 

 

10.1 Introduction 

In the previous section, we were mostly interested in an overall characterization 

of thin film transistor devices and basic parameters like mobility, threshold voltage, and 

subthreshold slope were obtained by plotting drain current against gate voltage. There are 

some other fundamental parameters which can be extracted by a more rigorous 

characterization, and can provide us with useful insights into the physics involved. In this 

chapter, we would describe some of these characterization techniques used in obtaining 

the series resistance of contacts, the resistance of the channel material, and also the 

maximum defect densities at the interface and bulk. We would also report on the mobility 

and threshold voltage values obtained by an independent measurement, and compare the 

results and limitations, if any.  

10.2 Transmission Line Method 

10.2.1 Theory of TLM 

In the linear regime of operation i.e. at low drain voltage, and using the gradual 

channel approximation for MOSFETs [83] we have 

                           ID = µFECox
L

W  (VG-VT)VDS ------------------------------- (1) 

Here, µFE is the field effect mobility, Cox the oxide capacitance, W is the width and L is 

the length of the MOSFET. VG, VT and VDS are the gate voltage, threshold voltage and 

drain-source voltages respectively. 
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The above equation predicts that for low drain-source voltages, we can observe a 

linear characteristic between the drain current and gate voltage. For a complete analysis 

of the electrical performance of the thin film transistor, we need to extract the TFT source 

and drain series resistances, the intrinsic threshold voltage and the intrinsic field effect 

mobility. The intrinsic device parameters are a measure of the electrical characteristics of 

the conduction channel itself without the influence of parasitic series resistances [86]. 

These are extracted by the well known Transmission Line Method [87] by using a series 

of TFTs having different channel lengths and measured under low source to drain voltage 

so that any space charge limited current (SCLC) effects can be neglected. 

The total ON resistance for the TFT under consideration is given by 

                             RT = 
D

DS

I

V
 = rchL + RS + RD ------------------------------- (2) 

where rch is the channel resistance per unit length and RS and RD are the source and drain 

series resistances respectively [86]. Using equations 1 and 2 we can express the total ON 

resistance of the TFT and a function of the threshold voltage and apparent field effect 

mobility as 

                            RT = 
)(µ TGoxFE VVWC

L

−
----------------------------------- (3) 

Considering the ideal case of negligible contribution to series resistance from the source 

and drain, we can express the channel resistance as a function of the intrinsic field effect 

mobility (µi) and threshold voltage (VTi) as 

                            rch = 
)V-W(VCµ

1

TGoxi

 ------------------------------------ (4) 
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10.2.2 Experimental results 

The extraction of the TFT source and drain series resistances and intrinsic 

threshold voltage and field effect mobility is now easy to calculate using a series of TFTs 

with varying channel lengths. For calculating these, we first calculate the ON resistances 

as a function of TFT channel length at varying gate voltages. Care must be taken so that 

the voltages are low enough to keep the TFTs in accumulation region of operation. The 

experimental data is then fitted to obtain linear plots as shown in fig 10.1 below. 
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   Figure 10.1 Illustration of the TLM used to extract the TFT source/drain series        
      resistances 
 

From the above linear fits to the experimentally observed data, we can obtain the total 

TFT series resistances (RS + RD) from the y intercepts and the channel resistance per 

channel length (rch) from the slopes.  
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We then proceed by plotting the reciprocal of rch as a function of the gate voltage 

and perform a linear fit. The slope then indicates the intrinsic field effect mobility (µi) as 

evident from equation (4) and we obtain the intrinsic threshold voltage (VTi) from the x-

intercept as shown in figure 10.2 below. 
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                       Figure 10.2 Extraction of the TFT intrinsic parameters using TLM 

From the above figure, we estimate the values of mobility and threshold voltage from the 

slope and intercept respectively to be: 

                       µi = 1.607 cm
2/V-s                VTi = -4.56 V 

These values compare well with our experimentally observed values of mobility 

and threshold voltage at µFE = 1.60 cm
2/V-s, and VT = -4.5 V in the case of independent 

measurement of drain-source current versus gate-source voltage. 
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10.2.3 TFT characteristic length 

Due to the effect of series resistances, the current is a bit smaller and can be 

modulated as an apparent increase in the channel length. The total TFT ON resistance can 

be written as [86]: 

                    RT = 
D

DS

I

V
 = RS +RD + 

)V - W(VCµ TGoxi

L
----------------------- (5) 

             

                    RT = 2RO + 
)V-W(VCµ

L2

TiGoxi

∆+L
 ---------------------------------- (6) 

where RO represents the limit of the source and drain series resistances for a very high 

gate voltage and can be associated with the contact resistance of source and drain. ∆L is 

independent of the gate voltage and can be associated with the resistance of the access 

region between the conduction channel and the source and drain contacts [87]. 

As shown in figure 10.1, ∆L and R0 can be extracted from the RT versus L curves. All of 

the RT versus L curves have a common cross point located slightly away from the y-axis 

[87], the coordinates of which are given by (x = -2∆L, y = 2R0). We thus have: 

                                 ∆L = 8µm, R0 = RS + RD = 50KΩ 

The series resistances for a TFT bear a strong correlation to the overlap between 

the source/drain contact and the gate contact. It has already been shown that the TFT 

contact resistance is not governed by the entire overlap between the gate and drain and is 

limited to a specific area of the contact [90-92]. We can thus define a TFT characteristic 

length (LT) to represent contact area [86] as shown in the figure below. 
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Figure 10.3 Definition of the characteristic length LT at the source and drain contacts [86] 

This characteristic length increases with the nanocrystalline silicon thickness, the 

bulk defect density and the source and drain contact resistances [93]. The effective 

source/drain series resistivity (rCeff), defined as the sum of the drain/source resistivity and 

the resistivity associated with the bulk of the access region between the contact and 

conduction channel [92] is given by 

                            rCeff = W LT
2 rch ----------------------------------------------- (7) 

using equation 7, and W =200µm, LT = 8µm, rch = 11.1 KΩ/µm 

                         rCeff = 1.42Ω-cm
2 

The source/drain contact characteristic length (LT) is very important from a TFT 

designing point of view for optimal device performance. During mask design, we would 

like to keep the overlap region between the source/drain at least equal to or greater than 

the characteristic length. This is because for an overlap smaller than LT, the whole 

contact is active. As the contact resistance is inversely proportional to the area, we have a 

larger contact resistance by keeping the overlap too small.  

Gate 

current flow 

SiO2 
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Source 
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10.2.4 Discussion 

In our device design, the overlap between the source/drain and gate was kept at 

15µm. From the above analysis, we find that the contact characteristic length for our 

device for a given set of deposition parameters was 10µm. In this way, we are safely out 

of the domain where our device performance could be limited by contact resistance 

problems. As a note, we should mention that our simplified bottom gate TFTs had a full 

overlap between the source/drain and gate contacts. The penalty we pay for any increase 

in the overlap area is an increase in the TFT parasitic capacitance. For this work we were 

not much interested in switching speed of devices, and could ignore this. A scope of 

improvement lies in reducing this overlap in the next mask design to optimize device 

performance. 

10.3 Transconductance method 

Another method of estimating the mobility of a MOSFET device is by the well 

known method of transconductance measurement. For a TFT operating in the linear 

region, the field-effect mobility is given by [85]: 

                    µFE = 







∂
∂

GS

DS

V

I

WVC

L

DSox

------------------------------------------- (8) 

Here, 







∂
∂

GS

DS

V

I
 is the transconductance of the device obtained directly from the HP 

Parameter Analyzer and Cox is the silicon dioxide gate capacitance per unit area. The 

following figure 10.4 illustrates the experimentally observed mobility as obtained using 

equation (8). 
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Figure 10.4 Transfer characteristics of a TFT from transconductance measurements 

               From the above plot, we can observe two regimes of mobility behavior for the 

TFT under consideration. At low gate to source voltages, the mobility is controlled by the 

band tail state density in nanocrystalline silicon channel material. At higher gate-source 

voltages, the mobility is limited due to scattering effect of holes. Also, the apparent 

decrease in mobility with length of the channel signifies that the series resistances from 

the contacts start playing an increasing role relative to the resistance of the channel.   

10.4 Maximum defect density characterization 

10.4.1 Theory 

As discussed in the previous section, diffusion dominated current transport comes 

into play once the drain voltage (VDS) is larger that a few KT/q, and the subthreshold 
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current becomes independent of the drain voltage. On the other hand, the dependence on 

the gate voltage is exponential with a subthreshold slope given by [25]: 

           S = 1/ 







g

DS

dV

Id )(log10
 = 2.3 

q

mKT
 = 2.3 

q

KT







 +
ox

dm

C

C
1 --------------- (9) 

Here m = 






 +
ox

dm

C

C
1 gives us a measure of the interface trap density since the capacitance 

associated with the interface trap is in parallel with the depletion layer capacitance (Cdm).  

In particular, the subthreshold slope depends on the trap density in the bulk (NT) 

and at the interface between nanocrystalline silicon and silicon dioxide gate dielectric 

[85]. The subthreshold slope can then be approximated as [94]: 

                             S = qKBT(NTts + Dit)/Coxlog10e --------------------------- (10) 

Here q, KB, T, ts and Ci are respectively the electronic charge, the Boltzmann constant, 

the absolute temperature, the nc-Si channel layer thickness, and the silicon dioxide gate 

dielectric capacitances. From equation (10), we can estimate the maximum values of NT 

and Dit by separately setting each of them to zero. 

10.4.2 Experimental results 

Let us consider the case for the device where the nanocrystalline silicon channel 

was undoped, giving us a minimum subthreshold slope of 700mV/decade. The gate-oxide 

thickness is 1200Å, and the thickness of the nc-Si:H channel layer (ts) is 100nm. Now 

setting NT and Dit to zero separately, we have the estimate of maximum defect densities 

as:  

             DitM = 2.10 × 10
12 cm-2eV-1           NTM = 2.1 × 10

17 cm-3eV-1 
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10.4.3 Discussion 

The maximum value of NT is reasonable, considering the inhomogeneous nature 

of the nanocrystalline silicon material, with numerous grain boundaries and defect states. 

Moreover, the channel formed in this case is interface layer between oxide and 

nanocrystalline silicon, where growth just starts. We believe that the defect density can 

be reduced even further by using a top-gate device geometry, where the channel is 

formed at the more homogenous nanocrystalline silicon bulk interface. However, the 

maximum value of oxide interface defect density is large compared to best values of 

~1011cm-2ev-1 for MOSFET devices. This can be due to the fact that some amount of 

plasma damage happens during the growth of the nanocrystalline silicon phase, or due to 

the fact that the higher defect density in the nc-Si:H material is masking the oxide defect 

in equation (10). Again, a top-gate device is expected to give smaller density of defects at 

the oxide interface, since the oxide deposition conditions are much mild as compared to 

nanocrystalline silicon, where high plasma power growth is usually required. As a 

passing note, it may be mentioned here that the maximum values of defect densities are 

lower than or comparable to similar values reported in literature [84]. 
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CHAPTER 11. TFT STABILITY 

 

11.1  Introduction 

For reliable operation, it is important that the TFTs exhibit a high stability under 

prolonged gate bias stress. An ideal TFT should show little or negligible shift in threshold 

voltage without any appreciable change in mobility after being subjected to stress. 

Generally two mechanisms are responsible for the observed degradation in TFTs: charge 

trapping in the gate insulator and defect state creation in nc-Si:H. In chapter we would 

briefly discuss the main defect creation mechanisms, and compare our experimentally 

observed results obtained by stressing TFTs. 

11.2 Mechanism of charge trapping in SiO2 

The well observed phenomena of charge trapping in silicon dioxide can be 

attributed to processes originating from its bonding structure. Wang [95] proposed the 

bonding arrangements of silicon atoms in silicon dioxide films and also on the surface of 

crystalline silicon wafers. A silicon atom should necessarily have four nearest neighbors 

to satisfy the covalent bond requirements, while a surface silicon atom would be required 

to have only three neighbors. An electron with unpaired spin would therefore be 

associated with this surface silicon atom, forming a dangling bond. This dangling bond 

acts as an electron trap, since it is ready to accept an electron to complete the covalent 

bond. 
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Figure 11.1 Schematic diagrams of silicon atom at silicon surface and silicon atom at the 
oxide surface with their trapping effect [47] 
 

The bonding requirements for SiO2 are quite in discrepancy from those of Si, as it 

is easy for electrons to transfer from silicon to oxygen [47]. However, a silicon atom over 

an oxide film has only three neighboring oxygen atoms. In this way, the silicon atom is 

incapable of transferring its extra electron, and is shown in the figure above. A silicon 

atom on silicon surface (Siss) requires an electron for completion of its covalent bond, 

while a silicon atom on oxide surface (Sios) has an extra electron. This extra electron is 

mutually transported in a natural process completing the Si-SiO2 bond, as shown below. 

                                         

Figure 11.2 Schematic showing Si and SiO2 satisfying the covalent-bond requirement [47] 
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A model of trap generation due to oxygen vacancies was forwarded by Woods 

and Willians [96], in which an oxygen atom was first removed from the tetrahedral 

structure, and two silicon atoms formed a Si-Si bond across the vacancy. These silicon 

atoms remained approximately in their original position, with the center forming a neutral 

hole trap and becoming positively charged by losing the non-bonding electron. This is 

schematically represented in figure 11.3. 

                                             

                            

                       Figure 11.3 Illustration of oxygen vacancy in the oxide [47] 

Another trapping mechanism at the interface has been proposed by Jeppson and 

Svensson to explain the degradation of MOS devices under negative-bias stress [97]. A 

two dimensional model similar to the previous one was proposed, in which an oxygen 

vacancy is incorporated with the trapping center in the bulk of the oxide. This trapping 

center is compensated for by capturing an electron from hydrogen atom following a post- 

metallization-anneal treatment, and is illustrated in figure 11.4. This H atom has 

originated in the SiO2 bulk or the Al-SiO2 interface.  
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Figure 11.4 PECVD SiO2 films (a) prior to post metallization annealing, (b) following 
post metallization annealing [47] 
 

However, after a bias-temperature or current-voltage stress, the surface defect 

Siss-H which had become inactive after PMA becomes electrically active. The hydrogen 

atom weakly bonded to the surface silicon can react with Si-O in the bulk of SiO2 

forming a silanol Si-OH bond. In this process, one Si+ in the oxide and one trivalent 

surface trap Siss would be left forming many unbonded trapping centers, as shown in 

figure 11.5. 

                                             

Figure 11.5 PECVD SiO2 films following current, voltage, or bias temperature stress [47] 

11.3 Mechanism of charge trapping in nanocrystalline silicon 

 It is now well known that nanocrystalline silicon consists of columnar grains with 

some amorphous tissue. PECVD nc-Si:H silicon growth starts off initially from an 
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amorphous phase and the grain boundaries become well defined after the film has grown 

to a certain thickness. This means that the diameter of the columns are not uniform along 

the growth direction, being tapered initially and gradually increases with growth attaining 

saturation. Moreover, there are many defect states along the grain boundaries with the 

bottom phase contributing the most on account of its larger amorphous content and 

porosity. It may be mentioned that by controlling the growth conditions, many of these 

defects can be passivated by hydrogen, but more work still remains to bring this down to 

levels comparable to single crystal silicon. The following figure shows a rough schematic 

of a typical nanocrystalline silicon film with the amorphous phase and defect states. 

 

     

 

 

 

 

     

 

       

Figure 11.6 Structure of a typical nc-Si:H film with trapping centers [6] 

As can be seen from the above, these defects can either be in the acceptor or 

donor state and are able to capture or donate an electron. A qualitative description of the 

physical phenomenon in n-channel nc-Si TFTs was proposed [105], and in this work we 

would explain our results in the context of p-channel nc-Si TFTs. 
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11.4 Device characteristics from stressing experiments 

To test the stability of the nanocrystalline silicon channel material, stress 

experiments were performed by applying negative and positive gate bias of -30V and 

+30V respectively. This corresponds to a high electric field of about 2.5MV/cm across 

the thickness of the oxide. The source was grounded, while a voltage of -5V was applied 

to the drain terminal. The devices were subjected to a stress time totaling 105 seconds, 

and data was recorded promptly at different time intervals taking care so as not to disturb 

the stressing conditions. In order to avoid any stress-induced history effects, positive and 

negative stress were performed on separate, but identical devices. The stressed devices 

were allowed to relax for 3-4 hours in ambient, and the output characteristics were 

recorded. From the drain current against gate voltage output characteristics, field effect 

mobility and threshold voltages were calculated and the results are shown in the 

following:      
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Figure 11.7 Shift in threshold voltage and mobility under negative gate bias stress as a 
function of time  
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Figure 11.8 Shift in threshold voltage and mobility under positive gate bias stress as a 
function of time 

 

From the above plots, we find that the change in mobility after prolonged gate 

bias stress is negligible. We cannot conclude anything with the small mobility 

degradation observed as it would fall within the limits of experimental error. The 

threshold voltage increases under a negative gate bias stress and decreases under a 

corresponding positive gate bias stress. The majority of the threshold voltage shift occurs 

during the initial stages of stressing in both cases. 

In this context, it is worthwhile to note that the TFTs subjected to either positive 

or negative gate bias stress recovered to the as-deposited state after 4-5 hours in ambient. 

We thus suspect that the shift in threshold voltage is a result of temporary charge trapping 



www.manaraa.com

 122 

in the nc-Si:H channel material as a result of gate bias stress, and not due to the 

degradation of the material itself. 

The following figure shows the drain current versus source-drain voltage 

characteristics for a device measured before stress and after negative and positive gate 

bias stress respectively for 105seconds. For each of these measurements, the gate voltage 

was fixed at two different values of -15V and -20V. 
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Figure 11.9 Comparison of drain saturation currents under no stress, and positive and 
negative gate bias stress 

 

From the above figure, we find that the drain saturation current decreases for the 

device subjected to a negative stress as compared to the as-deposited device. The drain 

saturation current on the other hand increases when the device is subjected to a positive 

gate bias stress. Comparing these results to those in figures 11.7 and 11.8 provides us 

with an intuitive idea about the overall phenomena. The threshold voltage becomes more 
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negative/increases under negative gate bias stress, while the same becomes less 

negative/decreases under positive gate bias stress. The overall drive current is 

proportional to the gate voltage modulated by the threshold voltage, and so the saturation 

current increases when the threshold voltage decreases and vice versa.  

11.5 Discussion 

As all the results of this study indicate, the increase in threshold voltage after 

negative gate bias stress and the decrease in threshold voltage after positive gate bias 

stress is a result of temporary charge trapping in the gate oxide or at the nanocrystalline 

silicon channel material/ oxide interface. The gate dielectric used in this study was 

thermally grown silicon dioxide and is of a very high quality. For this reason, charge 

injection into the bulk of the oxide can be safely neglected. There have been some reports 

that silicon films deposited by CVD form a better interface with silicon nitride as 

compared to oxide [98-100]. Also, many of the interface traps can be attributed to the 

nature of the nanocrystalline silicon material formed during growth. In the initial stages 

of growth, the film has more amorphous content and a greater porosity, and it is this 

region where the interface with gate-oxide is being formed. By using a very hydrogen 

dilution and reducing the growth rate at this initial phase, we were able to obtain a high 

quality interface, the indicative of which is the small and temporary threshold voltage 

shift during stress accompanied by negligible or no reduction in the mobility. 
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CHAPTER 12. CONCLUSIONS AND FUTURE RESEARCH 

 

In conclusion, in this thesis, in contrast to all previous work, we have shown that 

it is possible to fabricate true n-body, p channel bottom gate thin film transistor devices in 

nanocrystalline Si:H films. We showed that by doping the body layers with ppm levels of 

phosphine during deposition, it was possible to increase the body doping and 

simultaneously, increase the threshold voltage, as expected from standard MOSFET 

theory. The threshold voltage was shown to increase approximately as square root of 

phosphine flow, as expected from theory.  

We also show that very high on/off current ratios, exceeding 1x107 can be 

obtained in these devices. The ratio initially increases as the phosphine doping increases, 

as expected. However, at higher doping levels, the surface leakage reduces the ratio. We 

also show that a top-layer of PECVD deposited oxide reduces the leakage current. 

The mobility values achieved in our TFT devices are among the highest reported 

in the literature and exceed 1 cm2/V-s.  

We show that a simple Al diffusion process can be used to fabricate the device. 

This simple process obviates the need for making separate drain and source regions by 

PECVD growth and subsequent RIE etching to separate the source and drain regions. In 

our process, a deposition of Al, followed by wet etching to define the source and drain 

regions, and subsequent diffusion, makes good source and drain p type contacts. No post-

deposition reactive ion etching is needed. Avoiding such RIE prevents surface damage 

and excessive leakage, thus allowing us to obtain high on/off ratios. 
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We show that by using helium instead of hydrogen as the diluent gas for the 

growth of nanocrystalline silicon p layers, followed by subsequent annealing, results in 

significant increase in the conductivity of such p layers. We ascribe this increase to 

helium preventing 3-center bonding of boron to silicon.  

Further research should focus on understanding of the cause of high threshold 

voltages, and on the fabrication of top-gate TFT devices which can be expected to have 

higher mobilities. 
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